THERMAL PROPERTIES OF MATTER

Two friends A and B are waiting for another friend for tea. A took the tea in a cup and mixed the cold milk and then waits. B took the tea in the cup and then mixed the cold milk when the friend comes. Then the tea will be hotter in the cup of

	a) A		b) <i>B</i>			
	c) Tea will be equ	ally hot in both cups	d) Friend's cup			
2.	The temperatur	e of a metal block is increa	ased from 27°C to 84°C. T	The rate of the radiated energy		
	from the block v	vill increase approximatel	y			
	a) 2 times	b) 4 times	c) 8 times	d) 16 times		
3.	If the initial temp	eratures of metallic sphere a	and disc, of the same mass,	radius and nature are equal, then		
	the ratio of their rate of cooling in same environment will be					
	a) 1:4	b) 4:1	c) 1:2	d) 2:1		
4.	What should be the	ne lengths of a steel and copp	per rod at 0°C so that the l	ength of the steel rod is 5 cm		
		opper rod at any temperatur	e?			
	α (Steel) = 1.1 ×					
	α (Copper)= 1.7					
	a) 14.17 cm; 9.17		b) 9.17 cm, 14.17 c			
	c) 28.34 cm; 18.3		d) 14.17 cm, 18.34	cm		
5.		ment which is not true				
		re used for long distance ph	의 보고 10명 (10명 10명 10명 10명 10명 10명 10명 10명 10명 10명			
		rise due to inner electron tra				
		re detected by using a bolon	neter			
		ral source of IR radiation				
6.	If the ratio of coef	ficient of thermal conductiv	ity of silver and copper is 1	.0:9, then the ratio of the lengths		

upto which wax will melt in Ingen Hauz experiment will be

a) 6:10

b) $\sqrt{10}$: 3

c) 100:81

d) 81:100

7. A black body at a temperature of 1640 K has the wavelength corresponding to maximum emission equal to 1.75μ . Assuming the moon to be a perfectly black body, the temperature of the moon, if the wavelength corresponding to maximum emission is 14.35μ is

a) 100 K

b) 150 K

c) 200 K

d) 250 K

A block of metal is heated to a temperature much higher than the room temperature and allowed to cool in a room free from air currents. Which of the following curves correctly represents the rate of cooling

- Newton's law of cooling is a special case of
 - a) Stefan's law
- b) Kirchhoff's law
- c) Wien's law
- d) Planck's law
- 10. The radiant energy from the sun incident normally at the surface of earth is $20 \, kcal/m^2 min$. What would have been the radiant energy incident normally on the earth, if the sun had a temperature twice of the present one
 - a) $160 \, kcal/m^2 \, min$
- b) $40 \, kcal/m^2 \, min$
- c) $320 \, kcal/m^2 \, min$
- d) $80 \, kcal/m^2 \, min$

- 11. The spectrum from a black body radiation is a
 - a) Line spectrum

b) Band spectrum

c) Continuous spectrum

- d) Line and band spectrum both
- 12. Liquid oxygen at 50 K is heated to 300 K at constant pressure of 1 atm. The rate of heating is constant. Which of the following graphs represents the variations of temperature with time?

- 13. Of two masses of 5 kg each falling from height of 10 m, by which 2kg water is stirred. The rise in temperature of water
 - a) 2.6°C
- b) 1.2°C
- c) 0.32°C
- d) 0.12°C
- 14. The ratio of thermal conductivity of two rods of different material is 5:4. The two rods of same area of cross-section and same thermal resistance will have the lengths in the ratio
 - a) 4:5
- b) 9:1
- c) 1:9
- d) 5:4
- 15. The coefficient of volumetric expansion of mercury is 18×10^{-5} /°C. A thermometer bulbs has a volume $10^{-6}m^3$ and cross section of stem is 0.004 cm². Assuming that bulb is filled with mercury at 0°C then the length of the mercury column at 100°C is
 - a) 18.8 mm
- b) 9.2 mm
- c) 7.4 cm
- d) 4.5 cm
- 16. "Good emitters are good absorbers" is a statement concluded from
 - a) Newton's law of cooling

b) Stefan's law of radiation

c) Provost's theory

- d) Kirchhoff's law
- 17. Water falls from a height 500 m. The rise in temperature of water at bottom if whole of energy remains in water, will be (specific heat of water is $c=4.2 \text{ kJ kg}^{-1}$)

	a) 0.23°C	b) 1.16°C	c) 0.96°C	d) 1.02°C
18.		is routing about its dian	neter as axis of rotation.	If the temperature is
				ent of linear expansion of
	the metal= 10^{-5} °C ⁻¹)	- P	(
	a) 0.1%	b) 0.2%	c) 0.3%	d) 0.4%
10				nm. The radiation intensity
19.	The course of the same are announted to the court of the	constant 5.67 \times 10 ⁻⁸ Wm^-	\$	are the figure of the contract
	a) $5.67 \times 10^8 W/m^2$		c) $10.67 \times 10^7 W/m^2$	TOTAL STATE OF THE
20		USS 1	c) 10.67 × 10° W/m	d) 10.67 × 10 - W/m
20.	When vapour condenses	into liquid	h) It liborates boot	
	a) It absorbs heat		b) It liberates heat	
21	c) Its temperature increa		d) Its temperature decre	eases
21.		eat most rapidly if its surfa		1) pl. d. 0d.
22	a) White & polished	b) White & rough	c) Black & polished	d) Black & rough
22.	5	ndrical container is covered	150 Table 150 Ta	
				ature of upper surface of disc
	and the control of th	en anticon de comencia de transcribente de comencia de la propertion de la comencia de la comencia de la comencia de	ien the radiation loss to the	e surroundings will be (Take
	$\sigma = \frac{17}{3} \times 10^{-8} W/m^2 K^4)$			
	Oil Oil			
	OII →			
	0	il		
	þ⊷	"		
	a) $595 J/m^2 \times s$	b) 595 $cal/m^2 \times s$	c) $991.0 J/m^2 \times s$	d) $440 J/m^2 \times s$
23.	In the following figure, to	wo insulating sheets with t	hermal resistances R and 3	R as shown in figure. The
	temperature θ is			
	↑ a			
	20°C			
	3R θ			
	R 100°C			
	↑ a			
	a) 20°C	b) 60°C	c) 75°C	d) 80°C
24.	Four rods of different ra	dii r and length l are used t	to connect two reservoirs o	of heat at different
	temperatures. Which on	e will conduct heat fastest?		
	a) $r= 2$ cm, $l = 0.5$ m	b) $r = 1$ cm, $l = 0.5$ m	c) $r = 2$ cm, $l = 2$ m	d) $r = 1$ cm, $l = 1$ m
25.	Two spheres of radii in t	he ratio 1:2 and densities i	n the ratio 2:1 and of same	specific heat, are heated to
	same temperature and le	eft in the same surrounding	g. Their rate of cooling will	be in the ratio
	a) 2:1	b) 1:1	c) 1:2	d) 1:4
26.	The value of Stefan's con	stant is		
	a) $5.67 \times 10^{-8} W/m^2 - K^4$	l .	b) $5.67 \times 10^{-5} W/m^2 - K^2$	4
	c) $5.67 \times 10^{-11} W/m^2$ -K	4	d) None of these	
27.	An experiment takes 1	0 min to raise temperatu	ire of water from 0°C and	d 100°C and another 55
	min to convert it totall	y into steam by a stabiliz	ed heater. The latent hea	at of vaporization comes
	out to be			•
	a) 530 calg ⁻¹	b) 540 cal σ^{-1}	c) 550 calg ⁻¹	d) 560 calg ⁻¹
28				light. As the batteries were
20.		itii a new set oi batteries	s, produces bright white	iight. As the batteries were
	out			
	-) m1 1: 1 · · · · · ·	ets reduced with no char		

b) Light colour changes first to yellow and then red with no change in intensity

	c) It stops working suddenly while giving white light			
	d) Colour changes to red and also intensity gets reduced			
29.	The temperature of a piece of	f iron is 27°C and it is ra	diating energy at the rate of	of $Q kWm^{-2}$. If its
	temperature is raised to 151°	°C, the rate of radiation	of energy will become appi	roximately
	a) $2Q \ kW m^{-2}$ b)	$4Q \ kWm^{-2}$	c) $6Q \ kW m^{-2}$	d) $8Q \ kW m^{-2}$
30.	The temperature of a thin	uniform circular disc,	of one metre diameter is	increased by 10°C. The
	percentage increase in mor	ment of inertia of the	disc about an axis passin	g through its centre and
	perpendicular to the circul			
		0.011	c) 0.022	d) 0.044
31.	Surface of the lake is at 2°C. F	ind the temperature of	the bottom of the lake	\$50 SONO SONOS
		3℃	c) 4°C	d) 1°C
32.	The rate of radiation of a blace	ck body at 0°C is EJ/s. T	he rate of radiation of this	black body at 273°C will be
		8 E	c) 4 E	d) <i>E</i>
33.	A bimetallic is made of two str	rips A and B having coef	ficients of linear expansion	α_A and α_B . If $\alpha_A < \alpha_B$, then
	on heating, the strip will			
	a) Bend with A on outer side		b) Bend with B on outer s	ide
	c) Not bend at all		d) None of the above	
34.	The end A of a rod AB of le	ength 1 m is maintaine	d at 100°C and the end E	3 at 10°C. The
	temperature at a distance of	of 60 cm from the end	B is	
	a) 64°C b)	36°C	c) 46°C	d) 72°C
35.	A body initially at 80°C coo	ols to 64°C in 5 min an	d to 52°C in 10 min. the t	temperature of the
	surrounding is			an Carana, 2 Car an a an an an an America - 1920 Carana an America (1946 1944 Carana) (294
	~	16°C	c) 36°C	d) 40°C
36.	For a perfectly black body, its		.,	
		0.5	c) 0	d) Infinity
37.	In a steady state of thermal co		-	OF 80
	and 0°C respectively. What w			
	A of the rod	•		
	a) -30°C b)	70°C	c) 5°C	d) None of the above
38.	A hot and a cold body are kep	ot in vacuum separated	from each other. Which of	the following cause
	decrease in temperature of th	he hot body		
	a) Radiation		b) Convection	
	c) Conduction		d) Temperature remains	unchanged
39.	A litre of alcohol weighs			
	a) Less in winter than in sum		b) Less in summer than in	n winter
-27-22-13	c) Same both in summer and		d) None of the above	
40.	A solid sphere and a hollow s	TV		15 m
	allowed to cool in the same s	urroundings. If the temp	perature difference betwee	n each sphere and its
	surroundings is T, then	1	1 6 m	
	a) The hollow sphere will cook			
	b) The solid sphere will cool ac) Both spheres will cool at the			
	d) Both spheres will cool at the			
41	On the Celsius scale the absol	: "이렇게 하시아 하시다"라고 있었다는 "아이스 (FALC) 아이를 보네요.		
11.		-32°C	c) 100°C	d) -273.15°C
42.	A composite rod made of c			The Art I was a real and a second field the a
	Then	opper (a - 1.0 × 10	1.) and seed (a – 1.2	2 10 It jis ileated.
	a) It bends with steel on co	ncave eide	b) It bends with copper	on concave side
	a) it benus with steel off Co	nicave side	of it benus with copper	on concave side

c) It does not expand

- d) Data is insufficient
- 43. Ratio among linear expansion coefficient (α), areal expansion coefficient (β) and volume expansion coefficient (γ) is
 - a) 1:2:3
- b) 3:2:1
- c) 4:3:2
- d) None of these

- 44. Which of the following statements is true/correct
 - a) During clear nights, the temperature rises steadily upward near the ground level
 - b) Newton's law of cooling, an appropriate form of Stefan's law, is valid only for natural convection
 - c) The total energy emitted by a black body per unit time per unit area is proportional to the square of its temperature in the Kelvin scale
 - Two spheres of the same material have radii 1m and 4m and temperatures 4000K and 2000K
 - d) respectively. The energy radiated per second by the first sphere is greater than that radiated per second by the second sphere
- 45. Two temperature scales A and B are related by

 $\frac{A-42}{110} = \frac{B-72}{220}$. At which temperature two scales have the same reading?

- a) -42°C
- b) -72°C
- c) 12°C
- d) 40°C
- 46. The thermal capacity of a body is 80 cal, then its water equivalent is
 - a) 80 cal/g
- b) 8 g

c) 80 a

- d) 80 kg
- 47. The thermal capacity of 40 g of aluminium (specific heat = $0.2 cal/g/^{\circ}C$) is
 - a) 40 cal/°C
- b) 160 cal/°C
- c) 200 cal/°C
- d) 8 cal/°C
- 48. The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by
 - a) Wien's law

b) Rayleigh Jeans law

c) Planck's law of radiation

- d) Stefan's law of radiation
- 49. Which of the following law states that "good absorbers of heat are good emitters"
 - a) Stefan's law
- b) Kirchhoff's law
- c) Planck's law
- d) Wien's law
- 50. The following figure represents the temperature *versus* time plot for a given amount of a substance when heat energy is supplied to it at a fixed rate and at a constant pressure.

Which parts of the above plot represents a phase change?

a) a to b and e to f

b) *b* to *c* and *c* to *d*

c) d to eand e to f

- d) b to c and d to e
- 51. A liquid in a beaker has temperature $\theta(t)$ at time t and θ_0 is temperature of surroundings, then according to Newton's law of cooling the correct graph between $\log_e(\theta \theta_0)$ and t is

52. The portion AB of the indicator diagram representing the state of matter denotes

a) The liquid state of matter

- b) Gaseous state of matter
- c) Change from liquid to gaseous state
- d) Change from gaseous state to liquid state
- 53. Which of the following graphs correctly represents the relation between $\ln E$ and $\ln T$ where E is the amount of radiation emitted per unit time from unit area of a body and T is the absolute temperature

- 54. $0.93 \ watt-hour$ of energy is supplied to a block of ice weighing 10 g. It is found that
 - a) Half of the block melts
 - b) The entire block melts and the water attains a temperature of 4°C
 - c) The entire block just melts
 - d) The block remains unchanged
- 55. Three rods of the same dimension have thermal conductivities 3K, 2K and K. They are arranged as shown in fig. Given below, with their ends at 100° C, 50° C and 20° C. The temperature of their junction is

- a) 60°C
- b) 70°C
- c) 50°C
- d) 35°C

- 56. Melting point of ice
 - a) Increases with increasing pressure
- b) Decreases with increasing pressure

c) Is independent of pressure

- d) Is proportional to pressure
- 57. The surface temperature of the stars is determined using
 - a) Planck's law

b) Wien's displacement law

c) Rayleigh-Jeans law

- d) Kirchhoff's law
- 58. The total energy radiated from a black body source is collected for 1 min and is used to heat a quantity of water. The temperature of water is found to increase from 20°C to 20.5°C. If the absolute temperature of the black body is doubles and the experiment is repeated with the same quantity of water at 20°C, the temperature of water will be
 - a) 21°C
- b) 22°C
- c) 24°C
- d) 28°C
- 59. It is hotter for the same distance over the top of a fire than it is in the side of it, mainly because
 - a) Air conducts heat upwards
 - b) Heat is radiated upwards
 - c) Convection takes more heat upwards
 - d) Convection, conduction and radiation all contribute significantly transferring heat upwards
- 60. A black body has maximum wavelength λ_m at temperature 2000 K. Its corresponding wavelength at temperature 3000 K will be
 - a) $\frac{3}{2}\lambda_m$
- b) $\frac{2}{3}\lambda_m$
- c) $\frac{4}{9}\lambda_m$
- d) $\frac{9}{4}\lambda_m$
- 61. Two substances A and B of equal mass m are heated at uniform rate of 6 $cal\ s^{-1}$ under similar conditions. A graph between temperature and time is shown in figure. Ratio of heat absorbed H_A/H_B by them for complete fusion is

	200 020			
	a) $\frac{K_1 K_2}{K_1 + K_2}$	b) $K_1 + K_2$	c) $\frac{K_1K_2}{2}$	d) $\sqrt{K_1}K_2$
73.	The temperature of equ	al masses of three differ	ent liquids A , B and C are	12°C, 19°C and 28°C
	respectively. The temper	erature when A and B are	e mixed is 16°C and when	
		when A and C are mixed		
	a) 18.2°C	b) 22°C	c) 20.2°C	d) 24.2°C
74.			surface. If the speed of the	block decreases from
	1.50 N	mal energy developed in th	- 5	
	a) 3.75 <i>J</i>	b) 37.5 <i>J</i>	c) 0.375 <i>J</i>	d) 0.75 J
75.	Absorption co-efficient of			
	a) Zero	b) 0.5	c) 1	d) 0.25
76.		the surface of lake is -20°C	C. Then temperature of water	er just below the lower
	surface of ice layer is			
	a) -4°C	b) 0°C	c) 4°C	d) -20°C
77.			Y are connected as shown i	8
			ed at 60° C, end E at 10° C, th	
	0.92 cals ⁻¹ cm ⁻¹ °C ⁻¹ and	that Y is $0.46 \text{ cals}^{-1} \text{ cm}^{-1}$	$^{\circ}\mathrm{C}^{-1}$, then find the temper:	ature of junctions B , C , D .
	x			
	/ \			
	$A \longrightarrow B$ $X \longrightarrow E$			
	y y			
	Ď	13.0000.0000.0000	3 0000 0000 0000	1) 0000 0000 0000
		b) 30°C, 20°C, 20°C		d) 20°C, 20°C, 20°C
78.		in scales of temperature wi	2세 배딩 및 배송 및 : : [1] : [W. ELECTE
	a) -40	b) 313	c) 574.25	d) 732.75
79.			en specific heat of water is	N 0
	a) < 1	b) ∞	c) 1	d) 0
80.		100 Attention 100	own into a furnance. It is	observed that
	a) It is the darkest body	at all times		
	b) It cannot be distingui	ished at all times		
	c) Initially it is the dark	est body and later it beco	omes brightest	
	d) Initially it is the dark	est body and later it can	not be distinguished	
81.	A spherical black body wi	th a radius of 12 cm radiate	es 440 W power at 500K. I	f the radius were halved
	and the temperature doul	oled, the power radiated in	watt would be	
	a) 225	b) 450	c) 900	d) 1800
82.	Two bars of thermal cond	uctivities K and $3K$ and len	ngths 1cm and 2cm respect	ively have equal cross-
			n in the figure. If the temper	
	composite bar is 0°C and	100°C respectively (see fig	ure), then the temperature	ϕ of the interface is
	φ			
	0°C K 3K 100	°C		
	\longleftrightarrow			
	1 cm 2 cm	100		200
	a) 50°C	b) 100/3 °C	c) 60°C	d) 200 °C
83.	A metal rod of Vound's	3	it of thermal expansion α	J
05.			5	
	TO SEE MONEY SECTION (TODAY)	ams mvariam. It its tem	perature is raised by t° C,	the inlear stress
	developed in it is			T
	a) $\frac{\alpha t}{\gamma}$	b) $\frac{\gamma}{\alpha E}$	c) yat	d) $\frac{I}{\gamma \alpha t}$
	γ	αE	SWEN ACCESS	γαt

84.	a) Level in B decreases		b) Will overflow in A only	
85.				ear coefficient of expansion
	a) 0.000558 per°C	b) 0.00057 per°C	c) 0.00027 per°C	d) 0.00066 per°C
86.		ng rods are first connecte		
		other containing ice at 0	[10] - 10]	
		he same vessels. Let q_{1} an		
	cases respectively. The	ratio $\frac{q_1}{q_2}$ is	12 0	Ü
		b) $\frac{q_2}{1}$	4	1
	a) $\frac{1}{2}$	b) $\frac{2}{1}$	c) $\frac{4}{1}$	d) $\frac{1}{4}$
87.	Which of the following st	atements is correct	1	T
	a) A good absorber is a ba			
	b) Every body absorbs an	d emits radiations at every	temperature	
	- [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	ns emitted from a black boo	개통에 가장 하나 하나 하나 하나 있다. 그리고 있는 것이 하는 것이 하나 하는 듯.	
	black body is Plank's la	ıw		num emission from an ideal
88.		5	10 ⁻⁵ °C ⁻¹ has a length of 1	m at 20°C. The temperature
	at which it is shortened b	y 1 mm is b) -15°C	c) -30°C	d) −25°C
89	a) -20°C Thermoelectric thermom	- 공격하다. 전쟁하다	c) -30 C	u) –25 C
07.	a) Photoelectric effect		c) Compton effect	d) Joule effect
90.		ence is taken into accoun		
	water should			*
	a) Increase		b) Remain unchanged	
	c) Decrease		d) First increase then d	ecrease
91.	A black body is heated fro	om 27°C to 127°C. The ratio	of their energies of radiati	ions emitted will be
	a) 3:4	b) 9:16	c) 27:64	d) 81 : 256
92.				cal surface finish. The mass
				perature and placed in the
	same room having lower rate of cooling of S_1 to that	na a national de la company de la compan	ially insulated from each of	ther. The ratio of the initial
	a) 1/3	b) $(1/3)^{1/3}$	c) $1/\sqrt{3}$	d) $\sqrt{3}/1$
93		obtained from a furnace		
5.55.5		mum intensity in spectru		
	outer surface of star is	main intensity in spectre	ani ora star is at 5000 in	the temperature of the
	a) 7800 K	b) 6240 K	c) 5240 K	d) 3640 K
94.		ainst a steel plate with a	To the contract of the contract of	877 av. 20
		roduced is equally share		
		ullet is (specific heat cap		
	a) 80°C	b) 60°C	c) 40°C	d) 120°C
95.	A constant volume gas th	ermometer shows pressure	e reading of 50 cm and 90 c	cm of mercury at 0°C and
	100°C respectively. When	the pressure reading is 60	cm of mercury, the tempe	rature is
	a) 25°C	b) 40°C	c) 12°C	d) 12.5°C
96.				first 10 min and to 42°C in
	the next 10 min. Then t	he temperature of the su	rroundings is	

- a) 20°C
- b) 30°C
- c) 15°C
- d) 10°C
- 97. There is a black spot on a body. If the body is heated and carried in dark room then it glows more. This can be explained on the basis of
 - a) Newton's law of cooling

b) Wien's law

c) Kirchhoff's law

- d) Stefan's
- 98. If l is length A is the area of cross section and K is thermal conductivity, then the thermal resistance of the block is given by
 - a) KlA
- b) 1/KlA
- c) l + KA
- d) l / KA
- 99. The absolute temperatures of two black bodies are 2000 K and 3000 K respectively. The ratio of wavelengths corresponding to maximum emission of radiation by them will be
 - a) 2:3
- b) 3:2
- d) 4:9
- 100. A clock which keeps correct time at 20°C, is subjected to 40°C. If coefficient of linear expansion of the pendulum is 12×10^{-6} °C⁻¹. How much will it gain or lose time?
 - a) 10.3 s day^{-1}
- b) 20.6 s day^{-1}
- c) 5 s day^{-1}
- d) $20 \, \text{min day}^{-1}$
- 101. In a pressure cooker, cooking is faster because the increase of vapour pressure
 - a) Increases specific heat

b) Decreases specific heat

c) Decreases the boiling point

- d) Increases the boiling point
- 102. The heat is flowing through a rod of length 50 cm and area of cross-section $5cm^2$. Its ends are respectively at 25°C and 125°C. The coefficient of thermal conductivity of the material of the rod is 0.092 $kcal/m \times s \times s$ °C. The temperature gradient in the rod is
 - a) 2°C/cm
- b) 2°C/m
- c) 20°C/cm
- 103. The plots of intensity of radiation versus wavelength of three black bodies at temperatures T_1, T_2 and T_3 are shown. Then,

- a) $T_3 > T_2 > T_1$
- b) $T_1 > T_2 > T_3$
- c) $T_2 > T_3 > T_1$
- d) $T_1 > T_3 > T_2$
- 104. A composite metal bar of uniform section is made up of length 25 cm of copper, 10 cm of nickel and 15 cm of aluminium. Each part being in perfect thermal contact with the adjoining part. The copper end of the composite rod is maintained at 100°C and the aluminium end at 0°C. The whole rod is covered with belt so that no heat loss occurs at the sides. If $K_{Cu} = 2K_{Al}$ and $K_{Al} = 3K_{Ni}$, then what will be the temperatures of Cu - Ni and Ni - Al junctions respectively

- a) 23.33°C and 78.8°C
- b) 83.33°C and 20°C
- c) 50°C and 30°C
- d) 30°C and 50°C
- 105. Mercury boils at 367°C. However, mercury thermometers are made such that they can measure temperature are made such that they can measure temperature upto 500°C. This is done by
 - a) Maintaining vacuum above mercury column in the stem of the thermometer
 - b) Filling nitrogen gas at high pressure above the mercury column
 - c) Filling oxygen gas at high pressure above the mercury column
 - d) Filling nitrogen gas at low pressure above the mercury column
- 106. A student takes 50gm wax (specific heat = 0.6 kcal/kg°C) and heats it till it boils. The graph between temperature and time is as follows. Heat supplied to the wax per minute and boiling point are respectively

- a) 500 cal, 50°C
- b) 1000 cal, 100°C
- c) 1500 cal, 200°C
- d) 1000 cal, 200°C

107. Dry ice is

- a) Ice cube
- b) Sodium chloride
- c) Liquid nitrogen
- d) Solid carbon dioxide
- 108. A partition wall has two layers *A* and *B* in contanct, each made of a different material. They have the same thickness but the thermal conductivity of layer *A* is twice that of layer *B*. If the steady state temperature difference across the wall is 60*K*, then the corresponding difference across the layer *A* is
 - a) 10 K
- b) 20 K
- c) 30 K
- d) 40 K
- 109. A closed bottle containing water at 30° C is carried to the moon in a space-ship. If it is placed on the surface of the moon, what will happen to the water as soon as the lid is opened
 - a) Water will boil

b) Water will freeze

c) Nothing will happen on it

- d) It will decompose into H_2 and O_2
- 110. The coefficient of thermal conductivity of copper is 9 times that of steel. In the composite cylindrical bar shown in the figure, what will be the temperature at the junction of copper and steel?

- a) 75°C
- b) 67°C
- c) 25°C
- d) 33°C
- 111. Three discs, A, B and C having radii 2 m, 4 m and 6 m respectively are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensitios are 300 nm, 400 nm and 500 nm respectively. The power radiated by them are Q_A , Q_B and Q_C respectively
 - a) Q_A is maximum
- b) Q_B is maximum
- c) Q_c is maximum
- d) $Q_A = Q_B = Q_C$
- 112. Two rods of different materials having coefficient of thermal expansions α_1 and α_2 and Young's moduli Y_1 and Y_2 respectively are fixed between two rigid walls. The rods are heated, such that they undergo the same increase in temperature. There is no bending of rods. If $\alpha_1/\alpha_2=2/3$ and stresses developed in the two rods are equal, then $\frac{Y_1}{Y_2}$ is
 - a) 3/2

b) 1

- c) 2/3
- d) 1/2
- 113. Four identical rods of same material are joined end to end to form a square. If the temperature difference between the ends of a diagonal is 100°C, then the temperature difference between the ends of other diagonal will be
 - a) 0°C

b) $\frac{100}{l}$ °C; where l is the length of each rod

c) $\frac{100}{2l}$ °C

- d) 100°C
- 114. On investigation of light from three different stars *A*, *B* and *C*, it was found that in the spectrum of *A* the intensity of red colour is maximum, in *B* the intensity of blue colour is maximum and in *C* the intensity of yellow colour is maximum. From these observations it can be concluded that
 - a) The temperatures of A is maximum, B is minimum and C is intermediate
 - b) The temperatures of A is maximum, C is minimum and B is intermediate

		56	is maximum, A is minimun		
			is maximum, <i>B</i> is minimun		
				y cools form 61°C to 59°C	in 4 min. The time (in
			ody to cool from 51°C to	49°C will be	
	a) 8	b) 5	c) 6	d) 4
	116. V	Vhen red glass is heated i	n dark room it will seen		
	a) Green	b) Purple	c) Black	d) Yellow
	117. V	Which of the following cyl	indrical rods will conduct	most heat, when their ends	are maintained at the
	S	ame steady temperature			
	a) Length 1 m; radius 1 cm	n	b) Length 2 m; radius 1 cr	n
	c) Length 2 m; radius 2 cm	n	d) Length 1 m; radius 2 cr	n
	118. A	sphere, a cube and a thir	n circular plate, all made of	f the same material and hav	ing the same mass are
	ir	nitially heated to a tempe	rature of 1000°C. Which o	ne of these will cool first	
	0000) Plate	b) Sphere	c) Cube	d) None of these
	119. A	steel meter scale is to be	ruled so that millimeter in	ntervals are accurate within	n about $5 \times 10^{-5} mm$ at a
	C	ertain temperature. The	maximum temperature vai	riation allowable during the	e ruling is (Coefficient of
	li	near expansion of steel =	$= 10 \times 10^{-6} K^{-1}$)		
	a) 2°C	b) 5°C	c) 7°C	d) 10°C
	120. C	colour of shinning bright :	star is an indication of its		
	a) Distance from the earth		b) Size	
	c) Temperature		d) Mass	
	121. A	metal ball of surface are	a $200~cm^2$ and temperatui	re 527°C is surrounded by a	a vessel at 27°C. If the
	e	missivity of the metal is (0.4, then the rate of loss of	heat from the ball is ($\sigma = 5$	$5.67 \times 10^{-8} J/m^2 - s - K^4$
) 108 joules approx	b) 168 joules approx	c) 182 joules approx	d) 192 joules approx
	122. T	wo vessels of different m	aterials are similar in size	in every respect. The same	quantity of ice filled in
	tł	hem gets melted in 20 mi	nutes and 30 minutes. The	ratio of their thermal cond	luctivities will be
	a) 1.5	b) 1	c) 2/3	d) 4
II.	123. S	olar radiation emitted	by sun correspond to the	at emitted by black body	at a temperature of 6000
	K	. Maximum intensity is	emitted at wavelength	of 4800Å. If the sun was t	to cool down from 6000
			200	adiation would occur at	
) 4800Å	b) 9600Å	c) 2400Å	d) 19200Å
62				min and to 42°C in the n	Warner and the second
				min and to 42 cm the n	icat 10 iiiii. The
		emperature of the surr	100 CANADA CANADA (1980)	3.4500	13 2000
) 10°C	b) 5°C	c) 15°C	d) 20°C
					The lid of the container is
			han an an-markilla a manaran a arren a carrena a militar da la filia arr	역사 이 등에 보면 하다. 2000 보고 1000 이 100 전에 보면 보다 보다는 것이 되었다. 그 1000 전에 되었다는 것이 됩니다. 	rature will rise from 27°C
	to	o 77°C [Given specific h	eat of water is 4.2 kJ kg	⁻¹]	
	a) 8 min 20 s	b) 6 min 2 s	c) 7 min	d) 14 min
3	126. A	lead ball moving with a	velocity V strikes a wall an	d stops. If 50% of its energ	y is converted into heat,
	tl	hen what will be the incre	ease in temperature (Speci	ific heat of lead is S)	
		$\frac{2V^2}{JS}$	b) $\frac{V^2}{4IS}$	c) $\frac{V^2}{I}$	d) $\frac{V^2S}{2I}$
	d	JS	$\overline{4JS}$	$C_J \overline{J}$	$\frac{a_J}{2J}$
	127. T	wo metal cubes A and B	of same size are arranged	as shown in the figure. The	extreme ends of the
	C	ombination are maintain	ed at the indicated temper	atures. The arrangement is	thermally insulated. The
	C	oefficients of thermal cor	ductivity of A and B are 3	00W/m°C and 200W/m°C,	respectively. After steady
	St	tate is reached, the tempe	erature of the interface wil	l be	

a) 45°C

b) 90°C

c) 30°C

d) 60°C

128. The surface temperature of the sun is

a) 2900 K

b) 4000 K

c) 5800 K

d) 9000 K

129. The mechanical equivalent of heat J is

a) A constant

b) A physical quantity

c) A conversion factor

d) None of the above

130. On a hilly region, water boils at 95°C. The temperature expressed in Fahrenheit is

a) 100°F

b) 20.3°F

c) 150°F

d) 203°F

131. At a certain temperature for given wave length, the ratio of emissive power of a body to emissive power of black body in same circumstances is known as

a) Relative emissivity

b) Emissivity

c) Absorption coefficient

d) Coefficient of reflection

132. Recently, the phenomenon of superconductivity has been observed at 95 K. This temperature is nearly

a) $-288^{\circ}F$

b) $-146^{\circ}F$

c) $-368^{\circ}F$

d) $+178^{\circ}F$

133. The maximum wavelength of radiation emitted at 2000K is $4\mu m$. What will be the maximum wavelength of radiation emitted at 2400 K

a) $3.33 \mu m$

b) 0.66 µm

c) 1 µm

d) 1m

134. For proper ventilation of building, windows must be open near the bottom and top of the walls so as to let pass

a) In more air

b) In cool air near the bottom and hot air out near the roof

c) In hot air near the roof and cool air out near the bottom

d) Out hot air near the roof

135. A gas in an airtight container is heated from 25°C to 90°C. The density of the gas will

a) Increase slightly

b) Increase considerably

c) Remain the same

d) Decrease slightly

136. At NTP water boils at 100°C. Deep down the mine, water will boil at a temperature

a) 100°C

b) > 100° C

c) $< 100^{\circ}$ C

d) Will not boil at all

137. Calorie is defined as the amount of heat required to raise temperature of 1 g of water by 1 °C and it is defined under which of the following conditions?

a) From 14.5°C to 15.5°C at 760 mm of Hg

b) From 98.5°C to 99.5°C at 760 mm of Hg

c) From 13.5°C to 14.5°C at 76 mm of Hg

d) From 3.5°C to 4.5°C at 76 mm of Hg

138. According to the experiment of Ingen Hausz the relation between the thermal conductivity of a metal rod is K and the length of the rod whenever the wax melts is

a) K/l = constant

b) $K^2/l = \text{constant}$

c) $K/l^2 = \text{constant}$

d) Kl = constant

139. Two solid spheres of the same material have the same radius but one is hollow while the other is solid. Both spheres are heated to same temperature. Then

a) The solid sphere expands more

b) The hollow sphere expands more

c) Expansion is same for both

d) Nothing can be said about their relative expansion if their masses are not given

140. Three very large plates of same area are kept parallel and close to each other. They are considered as ideal black surfaces and have very high thermal conductivity. The first and third plates are maintained at

	temperatures 2T and 3T r	espectively. The temperat	ure of the middle (i.e. seco	nd) plate under steady state	
	a) $\left(\frac{65}{2}\right)^{\frac{1}{4}}T$				
141	The coefficient of volum	ne expansion of a liquid i	s 49 × 10^{-5} K ⁻¹ . Calculat	e the fractional change in	
		nperature is raised by 30			
	a) 7.5×10^{-3}	b) 3.0×10^{-3}	c) 1.5×10^{-2}	d) 1.1×10^{-3}	
142				roundings is 20°C, the time	
	taken by it to cool from 60	0°C to 30°C will be			
	a) 5 min	b) 8 min	c) 11 min	d) 12 min	
143	. Four pieces of iron heated	l in a furnace to different to	emperatures show differen	t colours listed below.	
	Which one has the highes	t temperature			
	a) White	b) Yellow	c) Orange	d) Red	
144	. No other thermometer is	as suitable as a platinum re	esistance thermometer to n	neasure temperature in the	
	entire range of				
	a) 0°C to 100°C	b) 100°C to 1500°C	c) -50° C to $+350^{\circ}$ C	d) −200°C to 600°C	
145	. Which of the following is	the correct device for the d	letection of thermal radiati	on	
	a) Constant volume therm	nometer	b) Liquid-in-glass thermo	meter	
	c) Six's maximum and min	nimum thermometer	d) Thermopile		
146	. The cause of Fraunhoffer				
	a) Reflection of radiations	s by chromosphere	b) Absorption of radiation	ns by chromosphere	
		by chromosphere			
147	147. While measuring the thermal conductivity of a liquid, we keep the upper part hot and lower part cool, so				
	that				
	a) Convection may be stop		b) Radiation may be stop	-	
	c) Heat conduction is easi		d) It is easier and more co		
148			thermal equilibrium the te		
	a) 0°C	b) 100°C	c) 55°C	d) 80°C	
149	. The dimensions of therma		<u> </u>	2 2 2	
			c) $ML^2T^{-3}K$		
150	are kept in such a way tha	nt their cross-sectional area	2000년 MIN (1911년 1일	area of cross-section. They aperature at one end of <i>A</i> is ivity is 1:3, then under	
		ture of the junction in cont			
	a) 25°C	b) 50°C	c) 75°C	d) 100°C	
151		at temperature 200°C and	400°C kept in air at 27°C. T	he ratio of net heat loss by	
	these bodies is			10 00 00 00 00 00 00 00 00 00 00 00 00 0	
	a) 1/4	b) 1/2	c) 1/16	d) $\frac{473^4 - 300^4}{673^4 - 300^4}$	
4.50				$673^4 - 300^4$	
152	. Water is used to cool radi	ators of engines, because			
	a) Of its lower density		b) It is easily available		
450	c) It is cheap		d) It has high specific hea		
153		and the state of t	esents the variation of te	F-10 F-10 C T-1	
			, ,	ion of radiation. Find the	
	correct relation betwee	n the emissivity and abs	orptivity power of the tw	o bodies.	

166. An electric kettle takes 4A current at 220 V. How much time will it take to boil 1 kg of water from temperature 20°C? The temperature of boiling water is 100°C				
a) 12.6 min	b) 4.2 min	c) 6.3 min	d) 8.4 min	
167. Expansion during heatir	ng	5-90 - 1	and the colours and the characteristics of a	
a) Occurs only in solids		b) Increases the weight of	of a material	
c) Decreases the density	of a material		e for all liquids and solids	
168. If the ratio of densities of			97	
between heat capacities				
a) 1 : 1	b) 2:1	c) 1:2	d) 1:3	
169. One end of a metal roo	n - 1000 to 10			
	rod is maintained at 0°C,			
	ent of thermal conductivi	Herman (1) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	31 (c) 4 (c)	
a) 3×10^3 J	b) 6×10^3 J	c) 9×10^3 J	d) 12×10^3 J	
170. The freezer in a refriger			d) 12 × 10)	
	and the second s			
a) The entire of the refrigerator is cooled quickly due to convectionb) The motor is not heated				
	the environment is high			
d) The heat gained from				
171. If there are no heat losse		condensation of r a of stea	m at 100°C into water at	
	each released by the convert y gm of ice at 0° C into	and the control of the comment of the first firs		
a) 1:1	b) 2.5 : 1	c) 2:1	d) 3:1	
172. The thermal conductivit			•	
$10 \ cal/s$ - cm^2 , then the t	50	and only in occuracy or acceptance		
a) 10°C/ <i>cm</i>	b) 12°C/ <i>cm</i>	c) 25°C/cm	d) 20°C/cm	
173. In MKS system, Stefan's				
a) 1	b) 10 ³	c) 10 ⁵	d) 10 ²	
174. A body cools from 60°				
STATE IN COLUMN TO STATE OF THE	ng to hold good, the temp	이번에 아이를 하는데 하면 이 없었다. 생각이 되었다면 하다 하는데 이 없었다.	10.000 00 00 00 00 00 00 00 00 00 00 00 0	
will be	ig to nota good, the tempe	crature of the body at the	end of the next 10 mm	
a) 45°C	b) 42.85°C	c) 40°C	4) 20 E°C	
		22 - 20 1 1 - 20 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d) 38.5°C	
175. The temperature at w			D 400 W	
a) Zero	b) 273 K	c) 30 K	d) 100 K	
176. One quality of a thermor		* (3)	mercury thermometer, Q is	
	er and R thermocouple type		D. D	
a) P is best, R worst	b) R is best, P worst	c) R is best, Q worst	d) P is best, Q worst	
177. An ice box made of Sty		8 8		
	area including lid of 0.8 i			
97	d filled with ice. If the out	tside temperature is 30°C	the rate flow of heat into	
the box is (in Js^{-1})				
a) 16	b) 14	c) 12	d) 10	
178. In heat transfer, which r	nethod is based on gravitati	on		
 a) Natural convection 	b) Conduction	c) Radiation	d) Stirring of liquids	
179. The temperature at whi	ch the vapour pressure of a	liquid becomes equals to th	ne external (atmospheric)	
pressure is its				
 a) Melting point 	b) Sublimation point	c) Critical temperature	d) Boiling point	
180. Newton's law of coolir	ng holds good only, if the t	temperature difference b	etween the body and the	
surroundings is				
a) Less than 10°C	b) More than 10°C	c) Less than 100°C	d) More than 100°C	

181.		temperature T radiates e		Wm ⁻²). When the
	temperature falls to ha	If $(ie, \frac{T}{2})$, the radiated ene	rgy (in Wm ⁻²) will be	
	a) $\frac{U}{\Omega}$	b) $\frac{U}{16}$	U	d) $\frac{U}{2}$
	a) 8	$\frac{1}{16}$	$\frac{c}{4}$	$\frac{a}{2}$
182.	If two metallic plates of e	equal thicknesses and therm	nal conductivities K_1 and K_2	are put together face to
	face and a common plate κ_1 κ_2	is constructed, then the equ	uivalent thermal conductiv	ity of this plate will be
	K_1K_2	$2K_1K_2$	$(K_1^2 + K_2^2)^{3/2}$	$(K_1^2 + K_2^2)^{3/2}$
	a) $\frac{1}{K_1 + K_2}$	b) $\frac{2K_1K_2}{K_1 + K_2}$	c) $\frac{(-1)^2 K_1 K_2}{K_2 K_3}$	d) $\frac{(K_1 + K_2)}{2K_1 K_2}$
		ne sun were to increase fr	1. 2	1-2
	and the state of the control of the	received on earth to wha		
		b) 16	c) 32	
101	a) 4	THE PART OF THE PA	(f - 1717)	d) 64
184.		re more sensitive than liqui		• • • • • • • • • • • • • • • • • • •
	a) Gases expand more th	17.1	b) Gases are easily obtain	
	c) Gases are much lighte		d) Gases do not easily cha	
185.		nelts how much ice at 0°C? (Latent heat of ice $= 80 \ cal$	gm and latent heat of
	$steam = 540 \ cal/gm)$	M21 200 411	S 5:	Stage at 1
	a) 1 gm	b) 2 <i>gm</i>	c) 4 gm	d) 8 <i>gm</i>
186.		W at a temperature of 127°	^o C. If the temperature is inc	reased to 927°C, then it
	radiates energy at the ra			
	a) 410W	b) 81W	c) 405W	d) 200W
187.		aw of cooling', the rate of co	ooling of a body is proporti	onal to the
	a) Temperature of the bo	2000		
	b) Temperature of the su	rrounding		
	c) Fourth power of the to	emperature of the body		
	d) Difference of the temp	erature of the body and the	e surroundings	
188.	The heat is flowing throu	igh two cylindrical rods of s	ame material. The diamete	rs of the rods are in the
	ratio 1:2 and their length	s are in the ratio 2:1. If the	temperature difference bet	ween their ends is the
	same, the ratio of rate of	flow of heat through them v	will be	
	a) 1:1	b) 2:1	c) 1:4	d) 1:8
189.	The quantities of heat	required to raise the temp	peratures of two copper :	spheres of radii
	r_1 and r_2 ($r_1 = 1.5r_2$) the	hrough 1 K are in the rati	o of	
	a) 1		c) $\frac{9}{4}$	27
		$\frac{5}{2}$	$\frac{c}{4}$	d) $\frac{27}{8}$
190.	'Stem Correction' in plati	num resistance thermomet	ers are eliminated by the u	se of
	a) Cells	b) Electrodes	c) Compensating leads	d) None of the above
191.	Two walls of thicknesses	d_1 and d_2 and thermal con	ductivities k_1 and k_2 are in	contact. In the steady state,
	if the temperatures at the	e outer surfaces are T_1 and T_2	T_2 , the temperature at the c	common wall is
	$k_1T_1d_2 + k_2T_2d_1$	b) $\frac{k_1T_1 + k_2d_2}{d_1 + d_2}$	$(k_1d_1 + k_2d_2)_{T,T}$	$k_1d_1T_1 + k_2d_2T_2$
	$\frac{1}{k_1d_2 + k_2d_1}$	$\frac{d_1 + d_2}{d_1 + d_2}$	$(T_1 + T_2)^{I_1 I_2}$	$\frac{d}{k_1d_1 + k_2d_2}$
192.	The coefficient of them	nal conductivity of a rod	depends on	
	a) Area		b) Length	
	c) Material of rod		d) Temperature differen	nce
193		sed to record the temperat		
1,0.	hanky	ised to record the temperat	are or a room. If the bail of	one is wrapped in wee
		rded by both will be same		
		rded by wet-bulb thermom	eter will be greater than the	at recorded by the other
	56	rded by dry-bulb thermome	878	7.0
	-, temperature reco		Do bi cater than the	

d)	None	of	the	a	bove

194. A 5cm thick ice block is there on the surface of water in a lake. The temperature of air is -10° C; how much time it will take to double the thickness of the block

$$(L = 80 \ cal/g, K_{ice} = 0.004 \ erg/s-k, d_{ice} = 0.92 \ g \ cm^{-3})$$

- b) 191 hours
- c) 19.1 hours
- d) 1.91 hours
- 195. 80 gm of water at 30°C are poured on a large block of ice at 0°C. The mass of ice that melts is

a) 30 gm

- b) 80 gm
- c) 1600 gm
- d) 150 gm
- 196. It is known that wax contracts on solidification. If molten wax is taken in a large vessel and it is allowed to cool slowly, then
 - a) It will start solidifying from the top to downward
 - b) It will start solidifying from the bottom to upward
 - c) It will start solidifying from the middle, upward and downward at equal rates
 - d) The whole mass will solidify simultaneously
- 197. A black body is heated from 27°C to 927°C. The ratio of radiation emitted will be

a) 1:4

b) 1:8

- c) 1:16
- 198. Five rods of same dimensions are arranged as shown in figure. They have thermal conductivities K_1, K_2, K_3, K_4 and K_5 . When points A and B are maintained at different temperature, no heat would flow through central rod, if

a) $K_1K_4 = K_2K_3$

b) $K_1 = K_4$ and $K_2 = K_3$

- d) $K_1K_2 = K_3K_4$.
- 199. The thermal conductivity of a rod is 2. What is its thermal resistivity?

a) 0.5

b) 1

- c) 0.25
- d) 2
- 200. When two ends of a rod wrapped with cotton are maintained at different temperatures and after same time every point of the rod attains a constant temperature, then
 - a) Conduction of heat at different points of the rod stops because the temperature is not increasing
 - b) Rod is bad conductor of heat
 - c) Heat is being radiated from each point of the rod
 - d) Each point of the rod is giving heat to its neighbour at the same rate at which it is receiving heat
- 201. The temperature at which a black body of unit area loses its energy at the rate of 1 joule/second is
 - a) −65°C
- b) 65°C
- c) 65 K
- d) None of these
- 202. The densities of a liquid at 0°C and 100°C are respectively 1.0127 and 1. A specific gravity bottle is filled with 300 g of the liquid at 0°C upto the brim and it is heated to 100°C. Then the mass of the liquid expelled in grams is (Coefficient of linear expansion of glass= $9 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}$)

a) $\frac{3}{10.1}$

- d) $\frac{3.81}{0.0127}$
- 203. A clock with an iron pendulum keeps correct time at 15°C. What will be the error, in second per day, if the room temperature is 20°C?

(The coefficient of linear expansion of iron is $0.000012^{\circ}C^{-1}$.)

- a) 2.6 s
- b) 6.2 s
- c) 1.3 s
- d) 3.1 s

- 204. Can we boil water inside the earth satellite by convection
 - a) Yes

c) Nothing can be said

d) In complete information is given

205. The coefficient of thermal conductivity of copper is nine times that of steel. In the composite cylindrical bar show in figure, what will be the temperature at the junction of copper ad steel?				
100° C Copper Steel 0°C				
18 cm → 6 cm				
a) 75°C b) 67°C	c) 33°C	d) 25°C		
206. If the temperature of the sun becomes twice its pres	sent temperature, then	•		
a) Radiated energy would be predominantly in infra	ared			
b) Radiated energy would be predominantly in ultra	aviolet			
c) Radiated energy would be predominantly in X-ra	y region			
d) Radiated energy would become twice the presen				
207. A black body of surface area $10cm^2$ is heated to 127		oom at temperature 27°C.		
The initial rate of loss of heat from the body at the r				
a) 2.99 W b) 1.89 W	c) 1.18 W	d) 0.99 W		
208. A body of area $1cm^2$ is heated to a temperature 100	00K. The amount of energy	radiated by the body in 1 s		
is (Stefan's constant $\sigma = 5.67 \times 10^{-8} Wm^{-2}K^{-4}$)	1 50 5 1	1) 5 4 7 1 1		
a) 5.67 joule b) 0.567 joule	c) 56.7 joule	d) 567 joule		
209. Heat current is maximum in which of the follow	ring (rods are of identica	dimension)?		
a) Cu	b) Steel Cu			
c) Cu Steel	d) Steel			
210. Two spheres made of same material have radii in th	ie ratio 1:2. Both are at san	ne temperature. Ratio of heat		
radiation energy emitted per second by them is		D 4 46		
a) 1:2 b) 1:8	c) 1:4	d) 1:16		
211. A body, which emits radiations of all possible wavela) Good conductorb) Partial radiator		d) Doufoatly blook body		
a) Good conductor b) Partial radiator 212. The temperature of hot and cold end of a 20 <i>cm</i> long	c) Absorber of photons	d) Perfectly black-body		
respectively. Temperature at the centre of the rod is	TO 1970	te are at 100 Cand 20 C		
a) 50°C b) 60°C	c) 40°C	d) 30°C		
213. The ends of two rods of different materials with the		[설명: 10 원명의 646개)		
lengths all are in the ratio 1:2 are maintained at the				
in the larger rod is 4 <i>cal/s</i> , that in the shorter rod ir				
a) 1 b) 2	c) 8	d) 16		
214. A metal rod of length 2m has cross sectional areas 2	A and A as shown in figure	e. The ends are maintained at		
temperatures 100°C and 70°C. The temperature at r	middle point C is			
100°C C 70°C				
2A				
← 1 <i>m</i> → 1 <i>m</i> →				
a) 80°C b) 85°C	c) 90°C	d) 95°C		
215. Good absorbers of heat are	art g i de articoloris	org Control of Control		
a) Poor emitters b) Non-emitters	c) Good emitters	d) Highly polished		
216. A black body at a temperature of 227°C radiates	s heat at the rate of 5 cal	$cm^{-2}s^{-1}$. At a		
temperature of 727°C the rate of heat radiated per unit area in cal cm ⁻² s ⁻¹ is				
a) 400 b) 80	c) 40	d) 15		
217. The energy distribution E with the wavelength (λ) i				
shown in the figure. As the temperature is increased		And the second second with the second		

- a) Shift towards left and become higher
- c) Shift towards right and become higher
- b) Rise high but will not shift
- d) Shift towards left and the curve will become
- 218. The wavelength of the radiation emitted by a body depends upon
 - a) The nature of the surface

- b) The area of the surface
- c) The temperature of the surface
- d) All of the above factors
- 219. There is a rough black spot on a polished metallic plate. It is heated upto 1400 K approximately and then at once taken in a dark room. Which of the following statements is true
 - a) In comparison with the plate, the spot will shine more
 - b) In comparison with the plate, the spot will appear more black
 - c) The spot and the plate will be equally bright
 - d) The plate and the black spot can not be seen in the dark room
- 220. In which of the following process convection does not take place primarily
 - a) Sea and land breeze

- b) Boiling of water
- c) Warming of glass of bulb due to filament
- d) Heating air around a furnace
- 221. Work done in converting one gram of ice at -10°C into steam at 100°C is
 - a) 3045 J
- b) 6056 J
- c) 721 J
- d) 616 J
- 222. There is some change in length when a 33000 N tensile force is applied on a steel rod of area of cross-section 10⁻³ m². The change of temperature required to produce the same elongation, if the steel rod is heated, is (The modulus of elasticity is $3 \times 10^{11} \text{Nm}^{-2}$ and the coefficient of linear expansion of steel is 1.1×10^{-5} °C⁻¹.
 - a) 20°C
- b) 15°C
- c) 10°C
- 223. If a graph is plotted taking the temperature in Fahrenheit along Y-axis and the corresponding temperature in Celsius along the X-axis, it will be a straight line
 - a) Having a + ve intercept on Y-axis
- b) Having a + ve intercept on X-axis

c) Passing through the origin

- d) Having a ve intercepts on both the axis
- 224. A solid material is supplied with heat at constant rate and the temperature of the material changes as shown. From the graph, the false conclusion drawn is

- a) AB and CD of the graph represent phase changes
- b) AB represents the change of state from solid to liquid
- c) Latent heat of fusion is twice the latent heat of vaporization
- d) CD represents change of state from liquid to vapour
- 225. A lead bulled strikes at target with a velocity of 480 ms⁻¹. If the bullet falls dead, the rise in temperature of bullet (c = 0.03), assuming that heat produced is equally shared between the bullet and target is
 - a) 557°C
- b) 457°C
- c) 857°C
- d) 754°C

- 226. The absolute zero is the temperature at which
 - a) Water freezes

b) All substances exist in solid state

c) Molecular motion ceases

d) None of the above

- 227. In a water-fall the water falls from a height of 100m. If the entire K. E. of water is converted into heat, the rise in temperature of water will be
 - a) 0.23°C
- b) 0.46°C
- c) 2.3°C
- d) 0.023°C
- 228. The thermal radiation from a hot body travels with a velocity of
 - a) $330 \, ms^{-1}$
- b) $2 \times 10^8 \ ms^{-1}$
- c) 1200 ms^{-1}
- d) $3 \times 10^8 \, ms^{-1}$
- 229. One end of a copper rod of length 1.0 m and area of cross-section $10^{-3}m^2$ is immersed in boiling water and the other end in ice. If the coefficient of thermal conductivity of copper is 92 cal/m-s-°C and the latent heat of ice is $8 \times 10^4 cal/kg$, then the amount of ice which will melt in one minute is
 - a) $9.2 \times 10^{-3} kg$
- b) $8 \times 10^{-3} kg$
- c) $6.9 \times 10^{-3} kg$
- d) $5.4 \times 10^{-3} kg$

- 230. Triple point of water is
 - a) 273.16°F
- b) 273.16 K
- c) 273.16°C
- d) 273.16R
- 231. Let there be four articles having colours blue, red, black and white. When they are heated together and allowed to cool, which article cool at the earliest
 - a) Blue
- b) Red
- c) Black
- d) White
- 232. The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity K and 2K and thickness x and 4x, respectively are T_2 and T_1 $(T_2 > T_1)$. The rate of heat transfer through the slab, in a steady state is $\left(\frac{A(T_2 - T_1)K}{K}\right)f$, with fequals to

a) 1

- b) 1/3
- c) 2/3
- d) 1/3
- 233. Temperatures of two stars are in ratio 3:2. If wavelength of maximum intensity of first body is 4000Å, what is corresponding wavelength second body?
 - a) 9000Å
- b) 6000Å
- c) 2000Å
- d) 8000Å
- 234. During constant temperature, we feel colder on a day when the relative humidity will be

- b) 12.5%
- c) 50%
- 235. A bimetallic strip consists of metals *X* and *Y*. It is mounted rigidly at the base as shown. The metal X has a higher coefficient of expansion compared to that for metal Y, when bimetallic strip is placed in a cold bath

- a) It will bend towards the right
- c) It will not bend but shrink

- b) It will bend towards the left
- d) It will neither bend nor shrink

- 236. A faulty thermometer has its lower fixed point marked as −10°C and upper fixed point marked as 110°. If the temperature of the body shown in this scale is 62°, the temperature shown on the Celsius scale is
 - a) 72°C
- b) 82°C
- c) 60°C

- 237. Which of the prism is used to see infra-red spectrum of light
 - a) Rock-salt
- b) Nicol
- c) Flint
- d) Crown
- 238. The two ends of a rod of length L and a uniform cross-sectional area A are kept at two temperature T_1 and T_2 ($T_1 > T_2$). The rate of heat transfer, $\frac{dQ}{dt}$, through the rod in a steady state is given by a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ c) $\frac{dQ}{dt} = kLA(T_1 - T_2)$ d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{LA}$

- 239. The temperatures of two bodies A and B are respectively 727°C and 327°C. The ratio $H_A: H_B$ of the rates of heat radiated by them is
 - a) 727:327
- b) 5:3
- c) 25:9
- d) 625:81
- 240. In a vertical U-tube containing a liquid, the two arms are maintained at different temperatures t_1 and t_2 . The liquid columns in the two arms have heights l_1 and l_2 respectively. The coefficient of volume expansion of the liquid is equal to

- b) $\frac{l_1 l_2}{l_1 t_1 l_2 t_2}$
- c) $\frac{l_1 + l_2}{l_2 t_1 + l_1 t_2}$
- d) $\frac{l_1 + l_2}{l_1 t_1 + l_2 t_2}$
- 241. A lead bullet of 10 g travelling at 300 m/s strikes against a block of wood and comes to rest. Assuming 50% of heat is absorbed by the bullet, the increase in its temperature is (specific heat of lead = 150J/kg, K)
 - a) 100°C
- b) 125°C
- c) 150°C
- d) 200°C
- 242. Which one of the figure gives the temperature dependence of density water correctly?

243. The spectrum of a black body at two temperatures 27°C and 327°C is shown in the figure. Let A_1 and A_2 be the areas under the two curves respectively. The value of $\frac{A_2}{A_1}$ is

- a) 1:16
- b) 4:1
- c) 2:1
- d) 16:1
- 244. The figure shows a glass tube (linear co-efficient of expansion is α) completely filled with a liquid of volume expansion co-efficient y. On heating length of the liquid column does not change. Choose the correct relation between γ and α

- a) $\gamma = \alpha$
- b) $\gamma = 2\alpha$
- c) $\gamma = 3\alpha$
- d) $\gamma = \frac{\alpha}{3}$

- 245. Which of the following statements is wrong
 - a) Rough surfaces are better radiators than smooth surface
 - b) Highly polished mirror like surfaces are very good radiators
 - c) Black surfaces are better absorbers than white ones
 - d) Black surfaces are better radiators than white
- 246. Two rods of same length and cross section are joined along the length. Thermal conductivities of first and second rod are K_1 and K_2 . The temperature of the free ends of the first and second rods are maintained at θ_1 and θ_2 respectively. The temperature of the common junction is
- b) $\frac{K_2K_1}{K_1 + K_2}(\theta_1 + \theta_2)$ c) $\frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$
- $d)\frac{K_2\theta_1 + K_1\theta_2}{K_1 + K_2}$
- 247. Three rods made of same material and having same cross-section are joined as shown in the figure. Each rod is of same length. The temperature at the junction of the three rods is

- a) 45°C
- b) 90°C
- c) 30°C
- d) 60°C
- 248. If the temperature of the sun (black body) is doubled, the rate of energy received on earth will be increased by a factor of

b) 4

c) 8

- d) 16
- 249. If a liquid is heated in weightlessness, the heat is transmitted through
 - a) Conduction
 - b) Convection
 - c) Radiation
 - d) Neither, because the liquid cannot be heated in weightlessness
- 250. The luminosity of the Rigel star is 17000 times that of the sun. Assume both to be perfectly black bodies. If the surface temperature of the sun is 6000 K, then the temperature of the star is
 - a) 68400 K
- b) 1.02×10^8 K
- c) 12000 K
- d) 68400°C
- 251. Which one of the following is $v_m T$ graph for perfectly black body? v_m is the frequency of radiation with maximum intensity, T is the absolute temperature.

a) <i>D</i>	b) <i>C</i>	c) <i>B</i>	d) <i>A</i>
	owing circular rods. (gi	**************************************	each made of the same material
		me temperature will cond	
		l_0 c) $r = r_0$; $l = l_0$	
	47 M	xpanding, the stress develop	
a) Material of the		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d) None of above
			y at 25°C. The condensation of
		to 54.3°C. What is the later	
a) 540 calg ⁻¹	b) 536 calg ⁻¹	c) 270 calg ⁻¹	d) 480 calg ⁻¹
		. Name - 14. maj kalang kalang kalang 19. maj kalang kalang kalang kala	ure is $200K$. Its cooling rate is H . If
· 이 제외에 있었다면 (February Control of the control of t		ing rate in same environmen	
a) (3/16)H	b) (16/3)H	c) (9/27)H	d) (1/16) <i>H</i>
			tant temperature of mixture
a) 31.2°C	b) 32.8°C	c) 36.7°C	d) 38.2°C
		953	temperature is raised from 0°C to
		aving the same length expan	
			vo parts, one of metal A and the
	The state of the s	cm for the same change in	emperature. The portion made of
metal A has the le		2.45	D 10
a) 20 cm	b) 10 cm	c) 15 cm	d) 18 cm
			is the same, but materials are
			mal equilibrium the temperature
	n the two ends is 36°C. Th	nen the difference of temper	ature at the two surfaces of A will
be	13.4200	3 4000	1) 2400
a) 6°C	b) 12°C	c) 18°C	d) 24°C
			coefficient of cubical expansion of
		ling that the density of metal	is large compared to that of
alcohol, it can be s		a) W < W	4) W = (W /3)
a) $W_1 > W_2$	b) $W_1 = W_2$	c) $W_1 < W_2$	d) $W_2 = (W_1/2)$
	wing has maximum speci b) Alcohol	c) Glycerine	4) 0:1
			d) Oil
(170)	g property of glass	ture and then anowed to coo	l. If it cracks, a probable reason for
a) Low thermal co		b) High thermal co	andustivity
c) High specific he		d) High melting p	aggineral month thousand #1
			al and have the same mass. They
	they melt, the latent heat		al and have the same mass. They
a) Are the same fo	5 79 M	required	
b) Is greater for th			
c) Is greater for th			
	5.5	depending upon the metal	
5.	KC S		at a wavelength of 11×10^{-5} cm.
	185) will be n times the temperature
	그들이 하는 아이들은 아이들이 살아 보는 사람들이 아니는 사람들이 되었다. 그렇게 되었다고 있다.		In the strict the temperature are the temperature are the temperature. The strict the temperature are the temperature.
value n is	(on Kelvin Scale) for will	ch the wavelength at maxim	in energy is 5.5 × 10 ° cm. The
	P) A	1	d) 1
a) 2	b) 4	c) $\frac{1}{2}$	d) 1
264. Calculate the amou	unt of heat (in calories) r	equired to convert 5 g of ice	at 0°C to steam at 100°C
	.ee vaarteen oor oo	. : : • : : : : : : : : : : : : : : : :	areaws awar राज्यां करण प्रसार प्रसार प्राप्त राज्यां ने सार्वेदित गिल्ला है । जिस्सीहित है । जिस्सीहित है जिस

a) 3	3100	cal
TAZL	ich	~ F +1

b) 3200 cal

c) 3600 cal

d) 4200 cal

265. Which of the following is more close to a black body?

a) Black board paint

b) Green leaves

c) Black holes

d) Red roses

266. The initial temperature of a body is 80°C. If its temperature falls to 64°C in 5 minutes and in 10 minutes to 52°C then the temperature of surrounding will be

b) 49°C

c) 35°C

d) 42°C

267. The temperature, at which Centigrade and Fahrenheit scales give the same reading is

b) 40°

c) -30°

268. Heat is flowing through a conductor of length l from x = 0 to x = l. If its thermal resistance per unit length is uniform, which of the following graphs is correct

269. A wire 3 m in length and 1 mm in diameter at 30°C is kept in a low temperature at −170°C and is stretched by hanging a weight of 10 kg at one end. The change in length of the wise is

$$(Y = 2 \times 10^{11} \text{ Nm}^{-2}, \text{g}=10 \text{ms}^{-2} \text{ and } \alpha = 1.2 \times 10^{-5} \text{ °C}^{-1})$$

a) 5.2 mm

b) 2.5 mm

c) 52 mm

d) 25 mm

270. The Wien's displacement law express relation between

- a) Frequency and temperature
- b) Temperature and amplitude
- c) Wavelength and radiating power of black body
- d) Wavelength corresponding to maximum energy and temperature

271. In the Ingen Hauz's experiment the wax melts up to lengths 10 and 25cm on two identical rods of different materials. The ratio of thermal conductivities of the two material is

c)
$$1:\sqrt{2.5}$$

272. A metal rod AB of length 10x has its one end A in ice at 0° C and the other end B in water at 100° C. If a point P on the rod is maintained at 400°C, then it is found that equal amounts of water and ice evaporate and melt per unit time. The latent heat of evaporation of water is 540 cal/g latent heat of melting of ice is 80 cal/g. If the point P is at a distance of λx from the ice end A, find the value of λ . [Neglect any heat loss to the surrounding]

273. The freezing point of the liquid decreases when pressure is increased, if the liquid

a) Expands while freezing

b) Contracts while freezing

c) Does not change in volume while freezing

d) None of these

274. If the temperature difference on the two sides of a wall increases from 100°C to 200°C, its thermal conductivity

a) Remains unchanged

b) Is doubled

c) Is halved

d) Becomes four times

275. The coefficient of apparent expansion of a liquid when determined using two different vessels A and B are γ_1 and γ_2 respectively. If the coefficient of linear expansion of the vessel A is α , the coefficient of linear expansion of the vessel B is

a)
$$\frac{\alpha \gamma_1 \gamma_2}{\gamma_1 + \gamma_2}$$

c) $\frac{\gamma_1 - \gamma_2 + \alpha}{3}$ d) $\frac{\gamma_1 - \gamma_2}{3} + \alpha$

276. A hollow copper sphere S and a hollow copper cube C, both of negligible thin walls of same area, are filled with water at 90°C and allowed to cool in the same environment. The graph that correctly represents their cooling is

277. A pendulum clock keeps correct time at 0°C. Its mean coefficient of linear expansions is α /°C, then the loss in seconds per day by the clock if the temperature rises by $t^{\circ}C$ is

a)
$$\frac{\frac{1}{2}\alpha t \times 864000}{1 - \frac{\alpha t}{2}}$$

b)
$$\frac{1}{2}\alpha t \times 86400$$

c)
$$\frac{\frac{1}{2}\alpha t \times 86400}{\left(1 - \frac{\alpha t}{2}\right)^2}$$

d)
$$\frac{\frac{1}{2}\alpha t \times 86400}{1 + \frac{\alpha t}{2}}$$

- 278. In which case the thermal conductivity increases from left to right
 - a) Al, Cu, Ag
- b) Ag, Cu, Al
- c) Cu, Ag, Al
- d) Al, Ag, Cu
- 279. A slab consists of two parallel layers of copper and brass of the same thickness and having thermal conductivities in the ratio 1:4. If the free face of brass is at 100°C and that of copper at 0°C, the temperature of interface is
 - a) 80°C
- b) 20°C
- c) 60°C
- d) 40°C
- 280. The volume of a metal sphere increases by 0.24% when its temperature is raised by 40°C. The coefficient of linear expansion of the metal is .../°C.
 - a) 2×10^{-5}
- b) 6×10^{-5}
- c) 18×10^{-5}
- d) 1.2×10^{-5}
- 281. The original temperature of a black body is 727°C. The temperature at which this black body must be raised so as to double the total radiant energy, is
 - a) 971 K
- b) 1190 K
- c) 2001 K
- d) 1458 K
- 282. Three objects coloured black, gray and white can with stand hostile conditions at 2800°C. These objects are thrown into furnace where each of them attains a temperature of 2000°C. Which object will glow brightest?
 - a) The white object

- b) The black object
- c) All glow with equal brightness
- d) Gray object
- 283. Mercury thermometers can be used to measure temperatures upto
 - a) 100°C
- b) 212°C
- c) 360°C
- d) 500°C
- 284. Two spheres of radii 8 cm and 2 cm are cooling. Their temperatures are 127°C and 527°C respectively. Find the ratio of energy radiated by them in the same time
 - a) 0.06
- b) 0.5

c) 1

- d) 2
- 285. Five identical rods are joined as shown in figure. Point A and C are maintained at temperature 120°C and

20°C respectively. The temperature of junction B will be

- a) 100°C
- b) 80°C
- c) 70°C
- d) 0°C

- 286. The saturation vapour pressure of water at 100°C is
 - a) 739 mm of mercury
- b) 750 mm of mercury
- c) 760 mm of mercury
- d) 712 mm of mercury
- 287. Two spheres made of same substance have diameters in the ratio 1:2. Their thermal capacities are in the ratio of
 - a) 1:2
- b) 1:8
- c) 1:4
- 288. The adjoining diagram shows the spectral energy density distribution E_{λ} of a black body at two different temperatures. If the areas under the curves are in the ratio 16:1, the value of temperature T is

a) 32,000 K

b) 16,000 K

c) 8,000 K

d) 4,000 K

289. A constant pressure air thermometer gave a reading of 47.5 units of volume when immersed in ice cold water, and 67 units in a boiling liquids. The boiling point of the liquid will be

b) 125°C

c) 112°C

d) 100°C

290. A hammer of mass 1kg having speed of 50 m/s, hit a iron nail of mass 200 gm. If specific heat of iron is 0.105 cal/gm°C and half the energy is converted into heat, the raise in temperature of nail is

a) 7.1°C

b) 9.2°C

c) 10.5°C

291. If a black body emits 0.5 J of energy per second when it is at 27°C, then the amount of energy emitted by it when it is at 627°C will be

a) 40.5 J

b) 162 J

c) 13.5 J

d) 135 J

292. A calorimeter of mass 0.2 kg and specific heat 900 J/kg-K. Containing 0.5 kg of a liquid of specific heat 2400 J/kg-K. Its temperature falls from 60°C to 55°C in one minute. The rate of cooling is

a) 5 1/s

b) 15 //s

c) 100 I/s

d) 115 //s

293. It is difficult to cook rice in an open vessel by boiling it a high altitudes because of

a) Low boiling point and high pressure

b) High boiling point and low pressure

c) Low boiling point and low pressure

d) High boiling point and high pressure

294. A vessel contains 110 g of water. The heat capacity of the vessel is equal to 10 g of water. The initial temperature of water in vessel in 10°C. If 220 g of hot water at 70°C is poured in the vessel, the final temperature neglecting radiation loss will be

b) 80°C

c) 60°C

295. A black body at 227°C radiates heat at the rate of 7 Cal/cm²s. At a temperature of 727°C, the rate of heat radiated in the same units will be

c) 112

296. A cane is taken out from a refrigerator at 0°C. The atmospheric temperature is 25°C. If t_1 is the time taken to heat from 0°C to 5°C and t_2 is the time taken from 10°C to 15°C, then

a) $t_1 > t_2$

b) $t_1 < t_2$

c) $t_1 = t_2$

d) There is no relation

297. Equal masses of two liquids are filled in two similar calorimeters. The rate of cooling will

a) Depend on the nature heats of liquids

b) Depend on the specific heats of liquids

c) Be same for both the liquids

d) Depend on the mass of the liquids

298. Absolute zero (0 K) is that temperature at which

a) Matter ceases to exist

b) Ice melts and water freezes

c) Volume and pressure of a gas becomes zero

d) None of these

299. A wall has two layers A and B made of different materials. The thickness of both the layers is the same. The thermal conductivity of A and B are K_A and K_B such that $K_A = 3K_B$. The temperature across the wall is 20°C. In thermal equilibrium

a) The temperature difference across $A = 15^{\circ}$ C

b) The temperature difference across A = 5°C

c) The temperature difference across A is 10°C

d) The rate of transfer of heat through A is more than that through B

300. The apparent coefficient of expansion of a liquid when heated in a copper vessel is C and when heated in a silver vessel is S. If A is the linear coefficient of expansion of copper, then the linear coefficient of expansion of silver is

a) $\frac{C+S-3A}{3}$	b) $\frac{C + 3A - S}{3}$	c) $\frac{S+3A-C}{3}$	d) $\frac{C+S+3A}{3}$
301. Two identical plates	s of different metals are join	ed to form a single plate wl	nose thickness is double the
5.		100 a	2 and 3 respectively, then the
conductivity of com		•	
a) 5	b) 2.4	c) 1.5	d) 1.2
	62°C to 50°C in 10 min ar	nd to 42°C in the next 10	min. The temperature of the
surrounding is			
a) 16℃	b) 26°C	c) 36°C	d) 21°C
303. Water has maximum	700 P. C.	,	, :
a) 0°C	b) 32°F	c) -4°C	d) 4°C
	dy coefficient of transmiss	8	
a) Zero	b) 1	c) 0.5	d) ∞
0.50	a substance increases by 27		
a) 300 K	b) 2.46 K	c) 27 K	d) 7 K
	of coefficient of cubical expa		16.5 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	level of liquid in the contain		
a) Rise	1	b) Fall	
c) Will remain almo	st stationary	d) It is difficult to say	,
			ting whole of its kinetic energy
	t of it will melt $(g = 10m/s^2)$		
a) $\frac{1}{33}$	b) $\frac{1}{8}$	c) $\frac{1}{33} \times 10^{-4}$	d) All of it will melt
	U	33	
and the second s	ssuming it as a black body) h		
	meters at which its radiation		
a) 48	b) 58	c) 60	d) 70
309. If the sun's surface radiates heat at $6.3 \times 10^7 Wm^{-2}$. Calculate the temperature of the sun assuming it to be			
	$.7 \times 10^{-8} Wm^{-2} K^{-4})$		
a) $5.8 \times 10^3 K$		c) $3.5 \times 10^8 K$	
		ody, what would be the ter	nperature of the star, in which
the rate of energy p	roduction is Q	12 (- 11 - 2 2 1/2	
a) $Q/4\pi R^2\sigma$		b) $(Q/4\pi R^2\sigma)^{-1/2}$	
c) $(4\pi R^2 Q/\sigma)^{1/4}$		d) $(Q/4\pi R^2\sigma)^{1/4}$	
1500 200 000 000 150 150		σ (σ stands for stefa	n's constant)
750	f H_2O is at the temperature	.) 420 <i>E</i>	12.40.5
a) 32° <i>F</i>	b) 39.2° <i>F</i>	c) 42°F	d) 4°F
	nally insulated rod is kept		
			ities K_1 and K_2 respectively.
The temperature a	at the interface of the two	sections is	
K ₁ K ₂	T ₂		
a) $(K_2l_2T_1 + K_1l_1T_1)$	$(2)/(K_1l_1+K_2l_2)$	b) $(K_2l_1T_1 + K_1l_2T_2)$	$)/(K_2l_1+K_1l_2)$
c) $(K_1l_2T_1 + K_2l_1T_1)$	$\binom{r}{2}$ / $(K_1l_2 + K_2l_1)$	d) $(K_1l_1T_1 + K_2l_2T_2)$	$)/(K_1l_1+K_2l_2)$
			ature 3T the power radiated by
it will be	round for each interest material and the Commission of the Commiss	veresioe ±4,450 fectore a 2004-114- Y 2004-1440 (4004) ♣ 2014-1	ander 14 maart 16 maart 16 maart 16 maart 16 maa 16 ma Ta'u
a) 3 <i>Q</i>	b) 9 Q	c) 27 Q	d) 81 Q
9501	1950		(a)

314. The figure given below shows the cooling curve of pure wax material after heating. It cools from A to B and solidifies along BD. If L and C are respective values of latent heat and the specific heat of the liquid wax, the ratio L/C is

a) 40

b) 80

c) 100

d) 20

315. A metal plate 4 mm thick has a temperature difference of 32°C between its faces. It transmits $200 \, kcal/h$ through an area of $5cm^2$. Thermal conductivity of the material is

a) 58.33 W/m-°C

b) 33.58 W/m-°C

c) $5 \times 10^{-4} W/m^{-9}C$

d) None of these

316. We have seen that a gamma-ray does of 3 Gy is lethal to half the people exposed to it. If the equivalent energy were absorbed as heat, what rise in body temperature would result

a) 300µK

b) 700μK

c) 455µK

d) 390µK

317. A perfect black body is one whose emissive power is

a) Maximum

b) Zero

c) Unity

d) Minimum

318. Heat travels through vacuum by

a) Radiation

b) Conduction

c) Convection

d) None of these

319. A solid copper sphere (density ρ and specific heat capacity c) of radius r at an initial temperature 200K is suspended inside a chamber whose walls are at almost 0K. The time required (in μ s) for the temperature of the sphere to drop to 100~K is

a) $\frac{72}{2} \frac{r\rho\sigma}{\sigma}$

b) $\frac{7}{72} \frac{r\rho c}{\sigma}$

c) $\frac{27}{7} \frac{r\rho c}{\sigma}$

d) $\frac{7}{27} \frac{r\rho c}{\sigma}$

320. Wires A and B have identical lengths and have circular cross-section. The radius of A is twice the radius of B i.e. $r_A = 2r_B$. For a given temperature difference between the two ends, both wires conduct heat at the same rate. The relation between the thermal conductivities is given by

a) $K_A = 4K_B$

b) $K_A = 2K_B$

c) $K_A = K_B/2$

d) $K_A = K_B/4$

321. Density of substance at 0° C is 10 g/cc and at 100° C, its density is 9.7 g/cc. The coefficient of linear expansion of the substance is

a) 1.03×10^{-4}

b) 3×10^{-4}

c) 19.7×10^{-3}

d) 10^{-3}

322. The volume of a gas at 20° C is $100 \ cm^3$ at normal pressure. If it is heated to 100° C, its volume becomes $125 \ cm^3$ at the same pressure, then volume coefficient of the gas at normal pressure is

a) 0.0015/°C

b) 0.0045/°C

c) 0.0025/°C

d) 0.0033/°C

323. The study of physical phenomenon at low temperatures (below liquid nitrogen temperature) is called

a) Refrigeration

b) Radiation

c) Cryogenics

d) Pyrometry

324. A piece of blue glass heated to a high temperature and a piece of red glass at room temperature, are taken inside a dimly lit room then

a) The blue piece will look blue and red will look as usual

b) Red look brighter red and blue look ordinary blue

c) Blue shines like brighter red compared to the red piece

d) Both the pieces will look equally red

325. The graph signifies

a) Adiabatic expansion of a gas

- b) Isothermal expansion of a gas
- c) Change of state from liquid to solid
- d) Cooling of a heated solid
- 326. The amount of heat conducted out per second through a window, when inside temperature is 10° C and outside temperature is -10° C, is 1000 J. Same heat will be conducted in through the window, when outside temperature -23° C and inside temperature is
 - a) 23°C
- b) 230 K
- c) 270 K
- d) 296 K
- 327. In determining the temperature of a distant star, one makes use of
 - a) Kirchhoff's law

b) Stefan's law

c) Wien's displacement law

- d) None of the above
- 328. Which curve shows the rise of temperature with the amount of heat supplied, for a piece of ice?

a) A

b) B

c) C

- d) D
- 329. An object is at a temperature of 400°C. At what temperature would it radiate energy twice as fast? The temperature of the surroundings may be assumed to be negligible
 - a) 200°C
- b) 200 K
- c) 800°C
- d) 800 K
- 330. At some temperature *T*, a bronze pin is a little large to fit into a hole drilled in a steel block. The change in temperature required for an exact fit is minimum when
 - a) Only the block is heated

- b) Both block and pin are heated together
- c) Both block and pin are cooled together
- d) Only the pin is cooled
- 331. Six identical metallic rods are joined together in a pattern as shown in the figure. Points A and D are maintained at temperature 60° C and 240° C. The temperature of the junction B will be

- a) 120°C
- b) 150°C
- c) 60°C
- d) 80°C
- 332. For cooking the food, which of the following type of utensil is most suitable
 - a) High specific heat and low conductivity
- b) High specific heat and high conductivity
- c) Low specific heat and low conductivity
- d) Low specific heat and high conductivity
- 333. Consider two hot bodies B_1 and B_2 which have temperatures 100°C and 80°C respectively at t=0. The temperature of the surroundings is 40°C. The ratio of the respective rates of cooling, R_1 and R_2 of these two bodies at t=0 will be
 - a) $R_1: R_2 = 3: 2$
- b) $R_1: R_2 = 5:4$
- c) $R_1: R_2 = 2:3$
- d) $R_1: R_2 = 4:5$
- 334. There are two spherical balls *A* and *B* of the same material with same surface, but the diameter of *A* is half that of *B*. If *A* and *B* are heated to the same temperature and then allowed to cool, then
 - a) Rate of cooling is same in both
- b) Rate of cooling of A is four times that of B
- c) Rate of cooling of A is twice that of B
- d) Rate of cooling of A is $\frac{1}{4}$ times that of B
- 335. A slab consists of two parallel layers of two different materials of same thickness having thermal conductivities K_1 and K_2 . The equivalent conductivity of the combination is

ect at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combine θ_2 . The temperature θ_1 by $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	ation of ice formation of ice c) Radiation mperature of a closed recom s placed on the top of a high of the mountain. If both the ect at the top of the mountain, b) Lower than the object of None of the above reconstruction of these two slab of their common junction $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
ity and retards further formativection and retards further ator here are heated through b) Conduction here reduces slightly the tevater is less than that of the ater is high heat of vaporisation heat of vaporisation heat of bigheat temperature T is an object at temperature T is an identical manner, the object at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combin S is S . The temperature S is S .	ation of ice formation of ice c) Radiation mperature of a closed recom s placed on the top of a high of the mountain. If both the ect at the top of the mountain, b) Lower than the object of None of the above reconstruction of these two slab of their common junction $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
hvection and retards further ator here are heated through b) Conduction here reduces slightly the tevater is less than that of the ater is high heaten theat of vaporisation heat of vaporisation heat an object at temperature T is high are also because T is a special properature is placed at the fool an identical manner, the object at the foot he foot at the foot thickness d_1 and d_2 . Their he free ends of the combines θ_2 . The temperature θ of θ_1 . The temperature θ of θ_2 . The temperature θ of θ_1 is θ_2 .	formation of ice c) Radiation mperature of a closed reference room s placed on the top of a high of of mountain. If both the ect at the top of the mountain b) Lower than the object of None of the above of thermal conductivities nation of these two slab of their common junction $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
b) Conduction ater reduces slightly the tere are heated through ater reduces slightly the tere ater is less than that of the ater is high atent heat of vaporisation aductor of heat an object at temperature T is an identical manner, the object at the foot at the foot at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combination θ_2 . The temperature θ_1 is θ_2 . The temperature θ_2 is θ_3 . The temperature θ_4 is θ_4 . The free ends of the combination θ_4 . The temperature θ_4 is θ_4 .	c) Radiation imperature of a closed representation of a closed representation on the top of a highest of mountain. If both the extract the top of the mountain b) Lower than the object of None of the above representation of these two slab of their common junction of the comm	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
b) Conduction ater reduces slightly the term is less than that of the stern is high atent heat of vaporisation aductor of heat an object at temperature T is an identical manner, the object at the foot at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combin θ_2 . The temperature θ_1 is θ_2 . The temperature θ_2 is θ_1 . The temperature θ_2 is θ_2 . The temperature θ_3 is θ_4 . The temperature θ_4 is θ_4 .	imperature of a closed representation of the above of their common function $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
b) Conduction here reduces slightly the term atter is less than that of the later is high here the theat of vaporisation and of the later is high here theat of vaporisation and object at temperature T is an identical manner, the object at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combin θ . The temperature θ is θ . The temperature θ is θ . The temperature θ is θ .	imperature of a closed representation of the above of their common function $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
iter reduces slightly the term atter is less than that of the atter is high attent heat of vaporisation inductor of heat an object at temperature T is in perature is placed at the foot an identical manner, the object at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combination θ_2 . The temperature θ_1 is θ_2 . The temperature θ_2 is θ_1 in θ_2 .	imperature of a closed representation of the above of their common function $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
vater is less than that of the later is high attent heat of vaporisation aductor of heat an object at temperature T is a perature is placed at the foot an identical manner, the object at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combin θ_2 . The temperature θ_1 b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	is placed on the top of a higher of mountain. If both the ect at the top of the mountain b) Lower than the object of None of the above of thermal conductivities nation of these two slab of their common junction $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	gh mountain. An identical objects are exposed to suntain will register a temperature ect at the foot sare K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
Iter is high atent heat of vaporisation inductor of heat an object at temperature T is a perature is placed at the foot at the foot at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combination θ_2 . The temperature θ_1 is $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	is placed on the top of a higher of mountain. If both the ect at the top of the mountain b) Lower than the object of the above of the above at thermal conductivities that on the common junction of their common junction $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	objects are exposed to suntain will register a temperature ect at the foot
attent heat of vaporisation inductor of heat an object at temperature T is a perature is placed at the foot at the foot at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combin θ_2 . The temperature θ_1 b) $\frac{K_1\theta_1d_1+K_2\theta_2d_2}{K_1d_2+K_2d_1}$	by of mountain. If both the ect at the top of the mountain b) Lower than the object of the mountain b) Lower than the object of the above of the above of the above of the conductivities that of their common junction by $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	objects are exposed to suntain will register a temperature ect at the foot
an object at temperature T is an object at temperature T is apperature is placed at the foot at the foot at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combination θ_2 . The temperature θ_1 is $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	by of mountain. If both the ect at the top of the mountain b) Lower than the object of the mountain b) Lower than the object of the above of the above of the above of the conductivities that of their common junction by $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	objects are exposed to suntain will register a temperature ect at the foot
an object at temperature T is apperature is placed at the foot at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combin θ_2 . The temperature θ_1 b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	by of mountain. If both the ect at the top of the mountain b) Lower than the object of the mountain b) Lower than the object of the above of the above of the above of the conductivities that of their common junction by $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	objects are exposed to suntain will register a temperature ect at the foot
inperature is placed at the food an identical manner, the object at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combin θ_2 . The temperature θ_1 b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	by of mountain. If both the ect at the top of the mountain b) Lower than the object of the mountain b) Lower than the object of the above of the above of the above of the conductivities that of their common junction by $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	objects are exposed to suntain will register a temperature ect at the foot
an identical manner, the object at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combine θ_2 . The temperature θ of $\frac{K_1\theta_1d_1+K_2\theta_2d_2}{K_1d_2+K_2d_1}$	b) Lower than the object at the top of the mount b) Lower than the object of the above of the above the thermal conductivities that ion of these two slab of their common junction $c) \frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	tain will register a temperature ect at the foot K_1 and K_2 respectively. It is are kept at temperature K_1 on is
ect at the foot at the foot thickness d_1 and d_2 . Their he free ends of the combine θ_2 . The temperature θ_1 by $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	b) Lower than the object of the above of the above of the above of thermal conductivities that of their common junction of $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	is are K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
at the foot thickness d_1 and d_2 . Their he free ends of the combines θ_2 . The temperature θ_1 b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	d) None of the above of thermal conductivities nation of these two slab of their common junction $c) \frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	is are K_1 and K_2 respectively. Is are kept at temperature θ_1 on is
thickness d_1 and d_2 . Their he free ends of the combin θ_2 . The temperature θ_1 b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	thermal conductivities the station of these two slab of their common junction their common junction $c) \frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	is are kept at temperature θ_1 on is
he free ends of the combines θ_2 . The temperature θ_1 by $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	nation of these two slab of their common junction c) $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	is are kept at temperature θ_1 on is
he free ends of the combines θ_2 . The temperature θ_1 by $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	nation of these two slab of their common junction c) $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	is are kept at temperature θ_1 on is
> θ_2 . The temperature θ of θ_2 b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	of their common junction of their common junction $c) \frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	on is
b) $\frac{K_1\theta_1d_1 + K_2\theta_2d_2}{K_1d_2 + K_2d_1}$	c) $\frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_1d_2 + K_2d_1}$	
1221	1221	d) $\frac{1}{K_1 + K_2}$
1221	1221	$n_1 + n_2$
	cools from 75°C to 70°C	in t_1 minutes, from 70°C to
nd from 65°C to 60°C in t_3		in t ₁ minutes, from 70 C to
		1) + > + > +
b) $t_1 = t_2 = t_3$		
		I temperature of 400 K. It is
le an evacuated enclosure	1276 m	erature 300 K. The rate of
$= 5.73 \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$)	
b) 2100	c) 1400	d) 1200
$= 5.5 \times 10^{-7}$ m when tem	perature of sun is 5500	K. If the furnace has
al to $11 imes 10^{-7}$ m, then tem	perature of furnace is	
b) 1750 K	c) 3750 K	d) 2750 K
ed from the surface of a black	k body at 127°C temperati	ure at the rate of 1.0 $ imes$
ature of the black body at wh	nich the rate of energy em	hission is $16.0 \times 10^6 J/s - m^2$
h) 508°C	c) 527°C	d) 727°C
그리는 이번째([[[] [[] [] [] [] [] [] [] [] [] [] [] [
ength is shown in figure. V	which of the following t	option is the correct match?
	The specific heat of the be $= 5.73 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$ b) 2100 $= 5.5 \times 10^{-7} \text{ m}$ when term of the best of a black of from the surface of a black ature of the black body at when the surface of the black body at which the surface of the black body at which the surface of the surface of the black body at which the surface of the su	The specific heat of the body in J kg $^{-1}$ K $^{-1}$ is = 5.73 × 10 $^{-8}$ Wm $^{-2}$ K $^{-4}$) b) 2100 c) 1400 = 5.5 × 10 $^{-7}$ m when temperature of sun is 5500 lt to 11 × 10 $^{-7}$ m, then temperature of furnace is b) 1750 K c) 3750 K ad from the surface of a black body at 127°C temperature of the black body at which the rate of energy em

- a) Sun- T_1 , tungsten filament- T_2 , welding arc T_3
- b) Sun- T_2 , tungsten filament- T_1 , welding arc T_3
- c) Sun- T_3 , tungsten filament- T_2 , welding arc T_1
- d) Sun- T_1 , tungsten filament- T_3 , welding arc T_2
- 346. Water and turpentine oil (specific heat less than that of water) are both heated to same temperature. Equal amounts of these placed in identical calorimeters are then left in air

- a) Their cooling curves will be identical
- b) A and B will represent cooling curves of water and oil respectively
- c) B and A will represent cooling curves of water and oil respectively
- d) None of the above
- 347. At what temperature the centigrade (Celsius) and Fahrenheit, readings are the same
- b) $+40^{\circ}$
- c) 36.6°
- 348. Radius of a conductor increases uniformly from left end to right end as shown in fig

Material of the conductor is isotropic and its curved surface is thermally insulated from surrounding. Its ends are maintained at temperatures T_1 and $T_2(T_1 > T_2)$: If, in steady state, heat flow rate is equal to H, then which of the following graphs is correct

- 349. A black body emits radiations of maximum intensity at a wavelength of 5000Å, when the temperature of the body is 1227°C. If the temperature of the body is increased by 2227°C, the maximum intensity of emitted radiation would be observed at
 - a) 2754.8Å
- b) 3000Å
- c) 3500Å
- d) 4000Å
- 350. The surface area of a black body is 5×10^{-4} m² and its temperature is 727°C. the energy radiated by it per minute is $(\sigma = 5.67 \times 10^{-8} \text{ Jm}^{-2} - \text{s}^{-1} - \text{K}^{-4})$
 - a) 1.7×10^3 J
- b) 2.5×10^2 [
- c) 8×10^{3} J
- d) 3×10^4 J
- 351. When fluids are heated from the bottom, convection currents are produced because
 - a) Molecular motion of fluid becomes aligned
 - b) Molecular collisions take place within the fluid

		more dense than the cold f		
	d) Heated fluid becomes	less dense than the cold flu	iid above it	
352	·	2000 - 19 5 0 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960	om 70°C to 60°C in 4 minu	tes. The time taken by it to
	cool from 69°C to 59°C w	ill be		
	a) The same 4 minutes		b) More than 4 minutes	
	c) Less than 4 minutes		d) We cannot say definite	ely
353		eam is $536 cal/gm$, then its	value in <i>joule/kg</i> is	
	a) 2.25×10^6	b) 2.25×10^3	c) 2.25	d) None
354	. A liquid of mass M and sp	pecific heat S is at a temper	ature $2t$. If another liquid a	of thermal capacity 1.5
		of $\frac{t}{3}$ is added to it, the result		2
	a) $\frac{4}{3}t$	b) <i>t</i>	c) $\frac{t}{2}$	d) $\frac{2}{3}t$
355		1000		ig its ends rigidly. The change
			30°C is (Take $Y = 2 \times 10^{11}$	Nm^{-2} , $\alpha = 1.1 \times 10^{-5} ^{\circ}C^{-1}$
	a) $1.5 \times 10^{10} \text{ N}$	b) 5 N	c) 88 N	d) $2.5 \times 10^{10} \text{ N}$
356	. Which one of the following	ng would raise the tempera	ture of 20 g of water at 30°	°C most when mixed with it?
	a) 20 g of water at 40°C		b) 40 g of water at 35 °C	
	c) 10 g of water at 50°C		d) 4 g water at 80°C	
357	According to Newton's	law of cooling, the rate of	of cooling is proportional	to $(\Delta \theta)^n$, where $\Delta \theta$ is the
	temperature difference	es between the body and	the surroundings and n	is equal to
	a) 3	b) 2	c) 1	d)
358	. If between wavelength λ	and $\lambda + d\lambda$, e_{λ} and a_{λ} be th	e emissive and absorptive	powers of a body and E_{λ} be
		perfectly black body, then a		
		b) $e_{\lambda}E_{\lambda}=a_{\lambda}$		d) $e_{\lambda}a_{\lambda}E_{\lambda} = \text{constant}$
359		e of transfer of heat is maxi		3 A A A
	a) Conduction		b) Convection	
	c) Radiation		d) In all these, heat is tra	nsferred with the same
	and the state of the control of the control of the state		velocity	
360	. The energy emitted per s	second by a black body at 2	7°C is 10 J. If the temperati	ure of the black body is
	increased to 327°C, the e	nergy emitted per second v	will be	
	a) 20 J	b) 40 J	c) 80 J	d) 160 J
361	. A cylindrical rod with on	e end in a steam chamber a	and the other end in ice res	sults in melting of 0.1 g of ice
	per second. If the rod is r	eplaced by another with ha	lf the length and double th	e radius of the first and if the
	thermal conductivity of t	he material of the second r	od is 1/4 that of the first, t	the rate at which ice melts in
	gs ⁻¹ will be			
	a) 3.2	b) 1.6	c) 0.2	d) 0.1
362	. Woolen clothes are used	in winter season because v	voolen clothes	
	a) Are good sources for p	producing heat	b) Absorb heat from surr	roundings
	c) Are bad conductors of	heat	d) Provide heat to body o	continuously
363. The energy supply being cut-off, an electric heater element cools down to the temperature of its				
surroundings, but it will not cool further because				
	a) Supply is cut off		b) It is made of metal	
	c) Surroundings are radi	ating	d) Element & surroundin	ngs have same temp.
364	. If a black body is heated	at a high temperature, it se	ems to be	
	a) Blue	b) White	c) Red	d) Black
365	. The radiation energy der	nsity per unit wavelength a	t a temperature T has a ma	ximum at a wavelength λ_0 .
	At temperature $2T$, it wil	l have a maximum at a wav	elength	
	a) $4\lambda_0$	b) $2\lambda_0$	c) $\lambda_0/2$	d) $\lambda_0/4$

- 366. Of the following thermometers, the one which can be used for measuring a rapidly changing temperature
 - a) Thermocouple thermometer

- b) Gas thermometer
- c) Maximum resistance thermometer
- d) Vapour pressure thermometer
- 367. A wall has two layers A and B, made of two different materials. The thermal conductivity of material A is twice that of B. If the two layers have same thickness and under thermal equilibrium, the temperature difference across the wall is 48°C, the temperature difference across layer B is
 - a) 40°C
- b) 32°C
- d) 24°C
- 368. Two rods of equal length and area of cross-section are kept parallel and lagged between temperature 20°C and 80°C. The ratio of the effective thermal conductivity to that of the first rod is $\left[\text{the ratio }\left(\frac{K_1}{K_2}\right) = \frac{3}{4}\right]$

- b) 7:6
- c) 4:7

- 369. A black body at a temperature of 127°C radiates heat at the rate of 1 $cal/cm^2 \times sec$. At a temperature of 527°C the rate of heat radiation from the body in $(cal/cm^2 \times sec)$ will be

- b) 10.45

- 370. Shown below are the black body radiation curves at temperatures T_1 and $T_2(T_2 > T_1)$. Which of the following plots is correct

- 371. Standardisation of thermometers is obtained with
 - a) Jolly's thermometer

b) Platinum resistance thermometer

c) Thermocouple thermometer

- d) Gas thermometer
- 372. The two opposite faces of a cubical piece of iron (thermal conductivity = 0.2 CGS unit) are at 100°C and 0° C in ice. If the area of a surface is $4cm^2$, then the mass of ice melted in a 10 minutes will be
- b) 300 g
- c) 5 g

- 373. Total energy emitted by a perfectly black body is directly proportional to T^n where n is
 - a) 1

b) 2

- 374. A piece of ice (heat capacity=2100JKg⁻¹ °C⁻¹ and latent heat= 3.36×10^5 Jkg⁻¹) of mass m gram is at −5°C at atmospheric pressure. It is given 420 J of heat so that the ice starts melting. Finally when the ice-water mixture is in equilibrium, it is found that 1 g of ice has melted. Assuming there is no other heat exchange in the process, the value of m is

b) 6

- 375. Three rods of same dimensions are arranged as shown in figure. They have thermal conductivities K_1, K_2 and K_3 . The points P and Q are maintained at different temperatures for the heat to flow at the same rate along PRQ and PQ then which of the following options is correct

- a) $K_3 = \frac{1}{2}(K_1 + K_2)$ b) $K_3 = K_1 + K_2$ c) $K_3 = \frac{K_1 K_2}{K_1 + K_2}$ d) $K_3 = 2(K_1 + K_2)$

- 376. Two cylinders P and Q have the same length and diameter and are made of different materials having thermal conductivities in the ratio 2:3. These two cylinders are combined to make a cylinder. One end of P is kept of 100°C and another end of Q at 0°C. The temperature at the interface of P and Q is

a) 30°C

b) 40°C

c) 50°C

d) 60°C

377. What will be the ratio of temperatures of sun and moon, if the wavelengths of their maximum emission radiations rates are 140 Å and 4200 Å respectively?

a) 1:30

b) 30:1

c) 42:14

d) 14:42

378. On Centigrade scale the temperature of a body increases by 30°. The increase in temperature on Fahrenheit scale is

a) 50°

b) 40°

c) 30°

d) 54°

379. Two bodies A and B having temperatures 327°C and 427°C are radiating heat to the surrounding. The surrounding temperature is 27°C. The ration of rate of heat radiation of A to that of B is

a) 0.52

b) 0.31

c) 0.81

d) 0.42

380. The absolute zero temperature in Fahrenheit scale is

a) $-273^{\circ}F$

b) $-32^{\circ}F$

c) $-460^{\circ}F$

d) $-132^{\circ}F$

381. Which of the curves in figure represents the relation between Celsius and Fahrenheit temperatures

a) 1

b) 2

c) 3

d) 4

382. Two circular discs A and B with equal radii are blackened. They are heated to some temperature and are cooled under identical conditions. What inference do you draw from their cooling curves?

a) A and B have same specific heats

b) Specific heat of A is less

c) Specific heat of B is less

d) Nothing can be said

383. A rod of silver at 0°C is heated to 100°C. It's length is increased by 0.19 cm. Coefficient of cubical expansion of the silver rod is

a) 5.7×10^{-5} /°C

b) 0.63×10^{-5} /°C

c) 1.9×10^{-5} /°C

d) 16.1×10^{-5} /°C

384. An iron bar of length *l* and having a cross-section *A* is heated from 0 to 100°C. If this bar is so held that it is not permitted to expand or bend, the force that is developed, is

a) Inversely proportional to the cross-sectional area of the bar

b) Independent of the length of the bar

c) Inversely proportional to the length of the bar

d) Directly proportional to the length of the bar

385. 1 g of steam at 100°C and equal mass of ice at 0°C are mixed. The temperature of the mixture in steady state will be (latent heat of steam=540calg⁻¹, latent heat of ice=80calg⁻¹)

b) 100°C

c) 67°C

d) 33°C

386. Two metal strips that constitute a thermostat must necessarily differ in their

a) Mass

b) Length

c) Resistivity

d) Coefficient of linear expansion

387. The resistance of the wire in the platinum resistance thermometer at ice point is 5Ω and at steam				
point is 5.25Ω . When	point is 5.25Ω . When the thermometer is inserted in an unknown hot bath its resistance is found			
to be 5.5Ω . The temp	perature of the hot bath is			
a) 100°C	b) 200°C	c) 300°C	d) 350°C	
388. The wavelength of rac	diation emitted by a body dep	ends upon		
a) The nature of its su	ırface	b) The area of its surface	e	
c) The temperature o	f its surface	d) All the above factors		
389. Two spherical bodie	es A (radius 6 cm) and B (ra	adius 18 cm) are at temp	erature T_1 and T_2	
respectively. The m	aximum intensity in the em	ission spectrum of A is a	t 500 nm and in that of B	
is at 1500 nm. Cons	idering them to be black bo	dies, what will be the rat	tio of the rate of total	
energy radiated by	A to that of ?			
a) 9	b) 9.5	c) 8	d) 8.5	
390. What is rise in tempe	rature of a collective drop who	en initially 1 gm and 2 gm	drops travel with velocities	
10 cm/sec and 15 cm	17			
a) 6.6×10^{-3} °C	b) 66×10^{-3} °C	c) 660×10^{-3} °C	d) 6.6°C	
and the second s	hs 45 g in air and 25 g in a liq	BOT	라는 사람들은 마다 마다 가장 모든 모든 마다 하는 바로 하는 것이 되었다. 그런 사람들은 마다 그 전에 가장 하는 것이 없다는 것이다. 그 사람들은 그 사람들은 그 사람들이 다른 사람들이 되었다.	
	e liquid is raised to 40°C, the r		The density of liquid at 40°C,	
_	⁻³ . The coefficient of linear exp		various manufactures of the state of the sta	
a) 1.3×10^{-3} /°C	b) 5.2×10^{-3} /°C		d) 0.26×10^{-3} /°C	
그는 마음에 가지 되겠었다. 하는데 불렀다는 맛이 되고 하지 않아 하나가 되었다.	perature is reproduced in the	laboratory by making use	of a	
a) Radiation pyromet				
b) Platinum resistanc	e thermometer elium gas thermometer			
	ideal gas thermometer			
70 70	sed into 1.1 <i>kg</i> of water conta	ined in a calorimeter of wa	iter equivalent to 0.02 kg at	
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	ure of the calorimeter and its		A	
condensed in kg is				
a) 0.130	b) 0.065	c) 0.260	d) 0.135	
394. A cylinder of radius R	made of a material of therma	l conductivity K_1 is surrou	nded by a cylindrical shell of	
inner radius R and ou	ter radius 2R made of materia	al of thermal conductivity I	K ₂ . The two ends of the	
이 아이들 아이를 하는 것 같아 나는 그 살아 있다.	maintained at two different to	하다면 바람이 가지 않았다. 하나 있는데 하나 이 아이는 아이에게 되었다면 하는데 아이		
cylindrical surface an	d the system is in steady state		33-24-34. (31-34.4) - 1 (31-34.4) - 31-34.4) - 31-34.4) - 31-34.4) - 31-34.4) - 31-34.4) - 31-34.4) - 31-34.4)	
a) $K_1 + K_2$	b) $\frac{K_1K_2}{K_1K_2}$	c) $\frac{K_1 + 3K_2}{4}$	d) $\frac{3K_1 + K_2}{4}$	
0.50 5.00 5.00	1 '2	, 1		
will be	wo bodies A and B are 727°C a	and 127°C. The ratio of rate	of emission of radiations	
a) 727/127	b) 625/16	c) 1000/400	d) 100/16	
396. 4200 <i>J</i> of work is requ		cj 1000/400	u) 100/10	
a) Increasing the temperature of 10 gm of water through 10°C				
b) Increasing the temperature of 100 <i>gm</i> of water through 10°C				
c) Increasing the temperature of 1 kg of water through 10°C				
d) Increasing the temperature of 10 kg of water through 10°C				
397. The coefficient of real expansion of mercury is 0.18×10^{-3} °C ⁻¹ . If the density of mercury at 0°C is 13.6				
g/cc, its density at 47	3 K will be			
a) 13.11 g/cc	b) 13.65 g/cc	c) 13.51 g/cc	d) 13.22 g/cc	
	is used as a bar pendulum. If	VIC	-	
1.77	the metal of the rod is 2×10^6 °C	CO - 176		
a) $1 \times 10^{-3}\%$	b) $-1 \times 10^{-3}\%$	c) $2 \times 10^{-3}\%$	d) $-2 \times 10^{-3}\%$	

399.	177	turned off, the sample com	P watts to remain in the mappeterly solidifies in time t s	√ -
			m	t
	a) $\frac{Pm}{t}$	b) $\frac{Pt}{m}$	c) $\frac{m}{Pt}$	d) $\frac{t}{Pm}$
	t	116	1 6	1 116
	- BOND - BOND - 10 10 10 10 10 10 10 10 10 10 10 10 10		he increase in it's temperat	
	a) $\frac{R^2\omega^2}{5Is}$	b) $\frac{R^2\omega^2}{Is}$	c) $\frac{Rm\omega^2}{5Is}$	d) None of these
		,,-	0,0	
401.	Two spheres made of sa	ame material have radii i	in the ratio 2:1. If both the	e spheres are at same
	temperature, then what	t is the ration of heat rad	iation energy emitted pe	r second by them?
	a) 1:4	b) 4:1	c) 3:4	d) 4:3
402			uilateral triangle PQR. O is	
102.	n og en eg a visa men en en en en men gregen på foren en en men men men gregen en e For en eller		erature. Coefficient of linea	
			erature. Coefficient of finea	r expansion for r n and no
	is same, i. e., α_2 but that for α_2	or r_Q is a_1 . Then		
	p Q			
	a) $\alpha_2 = 3\alpha_1$	b) $\alpha_2 = 4\alpha_1$	c) $\alpha_1 = 3\alpha_2$	d) $\alpha_1 = 4\alpha_2$
403.	As compared to the perso	n with white skin, the pers	on with black skin will exp	erience
	a) Less heat and more col	d	b) More heat and more co	ld
	c) More heat and less cold	d	d) Less heat and less cold	
404.	. 350	radiators of engines in cars		
	a) Of its low boiling point		b) Of its high specific heat	
	c) Of its low density		d) Of its easy availability	50
405	A red flower kept in green	n light will annear	a) of its easy availability	
105.	a) Red	b) Yellow	c) Black	d) White
106				
400.			e from the same metal form	
			and $\sqrt{2} T$ respectively in the	which the attended to the figure of the state of the stat
			he temperature difference	
	a) $\frac{\sqrt{2}+1}{2}T$	b) $\frac{2}{\sqrt{2}+1}T$	c) 0	d) None of these
	<u>2</u>	$\sqrt{2} + 1$		
407.	There is formation of laye	er of snow <i>x cm</i> thick on wa	ater, when the temperature	of air is $-\theta$ °C (less than
	freezing point). The thick	ness of layer increases from	$\mathbf{n} x$ to y in the time t , then t	he value of t is given by
	$(x+y)(x-y)\rho L$	$(x-y)\rho L$	c) $\frac{(x+y)(x-y)\rho L}{k\theta}$	$(x-y)\rho Lk$
	$\frac{2k\theta}{}$	$\frac{1}{2k\theta}$	$k\theta$	$\frac{1}{2\theta}$
408.	A stationary object at 4°C	and weighing $3.5~kg$ falls f	from a height of $2000 m$ on	a snow mountain at 0°C. If
	the temperature of the ob	ject just before hitting the	snow is 0°C and the object	comes to rest immediately
			ule/s), then the mass of ice	
	a) 2 kg	b) 200 g	c) 20 g	d) 2 g
409		of heat to a system, the wo		u) = g
407.	a) 400 joules	b) 1672 joules	c) 1672 watts	d) 1672 <i>ergs</i>
110	A CONTRACT OF THE CONTRACT OF			
410.	30°C, then the temperature	re of the cooler end is	0°C/m. If the temperature of	
42020000	a) 40°C	b) -10°C	c) 10°C	d) 0°C
411.			at temperature T is E . wh	en the temperature is
	increased to 3 T, energy	radiated is		
	O LTDS			

a) 81 <i>E</i>	b) 9 <i>E</i>	c) 3E	d) 27 <i>E</i>
	at 20°C. At 19°C it will be (
		ter c) $11 \times 10^{-5} cm$ shorter	d) $11 \times 10^{-5} cm$ longer
413. By increasing the te	mperature of a liquid its		
a) Volume and dens	ity decrease	b) Volume and density	increase
c) Volume increases	and density decreases	d) Volume decrease s a	nd density increases
414. Two rods, one of alu	ıminium and the other m	ade of steel, having initial le	ength $l_{ m 1}$ and $l_{ m 2}$ are
connected together	to form a single rod of le	ngth l_1+l_2 . The coefficients	of linear expansion for
aluminium and stee	l are α_a and α_s respective	ely. If the length of each rod	increases by the same
amount when their	temperature are raised b	by t° C, then find the ratio $\frac{l}{(l_1)}$	<u>1</u> +l ₂)·
a) $\frac{\alpha_s}{\alpha_a}$	α_a	c) $\frac{\alpha_s}{(\alpha_a + \alpha_s)}$	α_a
u.	3	\ u	(W. 37
	f mass 20 g at 0°C is mixed	d with 40 g of water 10°C, fina	temperature of the mixture
is	b) 0°C	a) 200C	4) 6 6690
a) 5°C		c) 20°C urface area by two bodies is 16	d) 6.66°C
	, then the temperature of co		. 1, the temperature of
a) 250 K	b) 500 <i>K</i>	c) 1000 K	d) 62.5 K
10 Annual (1997) (1997) (1997) (1997) (1997) (1997)		7°C and 67°C . If the surroun	
27°C, the ratio of los	ss of heats of the two bod	lies during the same interva	l of time
is(approximately)			
a) 4:1	b) 8:1	c) 12:1	d) 19:1
418. The amount of work,	which can be obtained by s	upplying 200 cal of heat, is	
a) 840 <i>dyne</i>	b) 840 W	c) 840 <i>erg</i>	d) 840 <i>J</i>
		ater at 20°C in an insulating	
a new mean and think a gold and and part a first and a		vater remaining in the cont	franktiere i Sussanie – <u>M</u> it resussa – Mither sefferene
		/°C and 0.5 kcal/kg/°C whi	e the latent heat of fusion
of ice is 80 kcal kg		3.41	n a l
a) 7 kg		c) 4 kg	
		spheres of radii r_1 and r_2 and	
	- A	v of heat in a substance betv	veen the two concentric
spheres, is proporti	onal to		
	\		
(
1 ₂ T	/		
12			
$(r_2 - r_1)$	· (r ₂)	(r_1r_2)	
a) $\frac{(r_2-r_1)}{(r_1r_2)}$	b) $\ln\left(\frac{r_2}{r_1}\right)$	c) $\frac{(r_1r_2)}{(r_2-r_1)}$	d) $(r_2 - r_1)$
421. Star A has radius r su	rface temperature T while	star B has radius 4r and surfa	ce temperature $T/2$. The
ratio of the power of	two starts, P_A : P_B is		(a) (b)
a) 16:1	b) 1:16	c) 1:1	d) 1:4
		t 80°C. The final temperature	
a) 0°C	b) 40°C	c) 80°C	d) Less than 0°C

	orization of a substance is alv		
 a) Greater than its late 		b) Greater than its latent	
c) Equal to is latent he		d) Less than its latent of	
The state of the s	water is increased the boilin		compared to 100°C will be
a) Lower		b) The same	
c) Higher		d) On the critical temper	
	y is gained when 5 kg of water	er at 20°C is brought to its b	ooiling point
(specific heat of water			
a) 1680 <i>kJ</i>	b) 1700 kJ	c) 1720 <i>kJ</i>	d) 1740 <i>kJ</i>
	$\frac{1}{2}$ ing such that $PT^2 = \text{constant}$		
a) $\frac{1}{T}$	b) $\frac{2}{T}$	c) $\frac{3}{T}$	d) $\frac{4}{T}$
	1	X	T
	erature at which water ha		1) 10000
a) 0°C	b) 4°C	c) 4K	d) 100°C
	g is used in laboratory for th		
a) Specific heat of the		b) The latent heat of gas	es
c) Specific heat of liqui		d) Latent heat of liquids	
429. Which of the substance	eA, B or C has the highest sp	ecinc neat? The temperatur	re vs time graph is snown
€↑↑ / ,			
Temperature (7)			
c bera			
Te l			
Time (t) \longrightarrow			
a) A		b) <i>B</i>	
c) C		d) All have equal specific	heat
	of radius r radiates heat. It's i		
a) Independent of r	b) Proportional to r	c) Proportional to r^2	d) Proportional to $1/r$
431. If wavelengths of maxi	mum intensity of radiations	emitted by the sun and the	moon are $0.5 \times 10^{-6} m$ and
	e ratio of their temperature		
a) 1/100	b) 1/200	c) 100	d) 200
432. On a new scale of temp	perature (which is linear) and	d called the W scale, the fre	ezing and boiling points of
water are 39° W and 2	39°W respectively. What wi	ll be the temperature on th	e new scale, corresponding
to a temperature of 39	°C on the Celsius scale		
a) 200°W	b) 139°W	c) 78°W	d) 117°W
433. A solid cube and a solid	d sphere of the same materia	l have equal surface area. E	Both are at the same
temperature 120°C, th	en		
a) Both the cube and t	he sphere cool down at the sa	ame rate	
b) The cube cools dow	n faster than the sphere		
c) The sphere cools do	wn faster than the cube		
	g more mass will cool down f		
_	_	_	The liquid emits heat at the
	its temp. is 75°C. When the t	emperature of the liquid be	ecomes 40°C, the rate of heat
loss in Js^{-1} is			
a) 160	b) 140	c) 80	d) 60
435. There are two identica	l vessels filled with equal am	ounts of ice. The vessels ar	e of different metals., If the
ice melts in the two ve	ssels in 20 and 35 minutes re	espectively, the ratio of the	coefficients of thermal
conductivity of the two			
a) 4:7	b) 7:4	c) 16:49	d) 49:16
436. A beaker is completely	filled with water at 4°C. It w	ill overflow	

	a) When heated, but not v	vhen cooled	b) When cooled, but not when heated					
	c) Both when heated or co	ooled	d) Neither when heated n	or when cooled				
437.	Water falls from a height	of 500 m. What is the rise in	n temperature of water at t	he bottom if whole energy				
	is used up in heating water	er?						
	a) 0.96°C	b) 1.02°C	c) 1.16°C	d) 0.23°C				
438.	A thin square steel plate v	vith each side equal to $10\ c$	m is heated by a blacksmit	h. The rate of radiated				
	energy by the heated plat	e is 1134 W. The temperati	ure of the hot steel plate is	(Stefan's constant $\sigma =$				
	$5.67 \times 10^{-8} watt \ m^{-2} K^{-4}$, emissivity of the plate $= 1$	1)					
	a) 1000 K	b) 1189 K	c) 2000 K	d) 2378 K				
439.	When the room temper	ature becomes equal to t	he dew point, the relativ	e humidity of the room is				
	a) 100%	b) zero%	c) 70%	d) 85%				
440.	How many grams of a liqu	iid of specific heat 0.2 at a t	emperature 40°C must be i	nixed with 100 gm of a				
	liquid of specific heat of 0 32°C	.5 at a temperature 20°C, so	o that the final temperature	e of the mixture becomes				
	a) 175 gm	b) 300 g	c) 295 gm	d) 375 <i>g</i>				
441.	During illness an 80 kg m	an ran fever of 102.2°F ins	tead of normal body tempe	erature of 98.6°F.				
	Assuming that human boo	ly is mostly water, how mu	ch heat is required to raise	his temperature by that				
	amount							
	a) 100 kcal	b) 160 <i>kcal</i>	c) 50 kcal	d) 92 <i>kcal</i>				
442.	Two solid spheres A and	d $\it B$ made of the same ma	terial have radii $r_{\!\scriptscriptstyle A}$ and $r_{\!\scriptscriptstyle A}$	_B respectively. Both the				
	spheres are cooled fron	າ the same temperature ເ	ander the conditions vali	d for Newton's law of				
	cooling. The ratio of the	rate of change of temper	rature of A and B is					
	r_A	b) $\frac{r_B}{r_A}$	c) $\frac{r_A^2}{r_B^2}$	r_B^2				
	a) $\frac{r_A}{r_B}$	r_A	r_R^2	d) $\frac{r_B^2}{r_A^2}$				
443.	Assuming the sun to be	a spherical body of radiu	is R at a temperature of T	K, evaluate the total				
	100 mm (100 mm m	on earth, at a distance r	070					
		f the earth and σ is stefar						
			c) $r_0^2 R^2 \sigma T^4 / 4\pi r^2$	d) $R^2 \sigma T^4 / r^2$				
444			and thickness 2mm. The o					
	1776		y of glass in MKS system is					
	room per second will be		, or grade in this eyetem is	• • • • • • • • • • • • • • • • • • •				
	a) 3×10^4 joules	b) 2×10^4 joules	c) 30 joules	d) 45 joules				
445.	[전기를 경기 전 로마시크 스타워 (HT - 기를 시간 시간 시절시 시간 시절시)		e kept between the same to					
			ivities K_1 and K_2 . The rate of					
	two rods will be equal, if		20 0771					
	a) $K_1 A_2 = K_2 A_1$	b) $K_1 A_1 = K_2 A_2$	c) $K_1 = K_2$	d) $K_1 A_1^2 = K_2 A_2^2$				
446.	A vertical column 50 cm l	ong at 50°C balances anoth	er column of same liquid 6	0 cm long at 100°C. The				
	coefficient of absolute exp	pansion of the liquid is						
	a) 0.005/°C	b) 0.0005/°C	c) 0.002/°C	d) 0.0002/°C				
447.	A cylindrical rod having to	emperature T_1 and T_2 at its	ends. The rate of flow of he	eat is Q_1 cal/s. If all the				
	linear dimensions are dou	ibled keeping temperature	constant then rate of flow	of heat Q_2 will be				
	a) 4Q ₁	b) 2Q ₁	c) $\frac{Q_1}{A}$	d) $\frac{Q_1}{2}$				
			**	2				
448.			st appear red, then yellow	and finally white. It can be				
	understood on the basis of		1.3.D					
	a) Wien's displacement la		b) Prevost theory of heat	exchange				
	c) Newton's law of cooling	S .	d) None of the above					

CLICK HERE >>>

	[Head of the Control		°C are 40cm of mercury and
the temperature is			m of mercury column, then
a) 100°C	b) 50°C	c) 25°C	d) 300°C
450. The coefficient of su	perficial expansion of a soli	d is 2×10^{-5} /°C. Its coeffice	cient of linear expansion is
a) 4×10^{-5} /°C	b) 3×10^{-5} /°C	c) $2 \times 10^{-5} / ^{\circ}$ C	d) $1 \times 10^{-5} / ^{\circ}$ C
	to have a spherical outer he power received by a u	A CONTRACTOR OF THE PROPERTY O	nting like a black body at ne incident rays) at a distance
R from the centre	of the sun is		

Where σ is the stefan's constant.

a)
$$\frac{4\pi r^2 \sigma t^4}{R^2}$$

b)
$$\frac{r^2\sigma(t+273)^4}{4\pi R^2}$$
 c) $\frac{16\pi^2r^2\sigma t^4}{R^2}$

c)
$$\frac{16\pi^2 r^2 \sigma t^4}{R^2}$$

d)
$$\frac{r^2\sigma(t+273)^4}{R^2}$$

452. The variation of density of water with temperature is represented by the

453. Two identical rods of copper and iron are coated with wax uniformly. When one end of each is kept at temperature of boiling water, the length upto which wax melts are 8.4cm and 4.2cm respectively. If thermal conductivity of copper is 0.92, then thermal conductivity of iron is

a) 0.23

b) 0.46

c) 0.115

d) 0.69

454. Mud houses are cooler in summer and warmer in winter because

a) Mud is superconductor of heat

b) Mud is good conductor of heat

c) Mud is bad conductor of heat

d) None of these

455. Two slabs A and B of equal surface area are placed one over the other such that their surfaces are completely in contact. The thickness of slab A is twice that of B. The coefficient of thermal conductivity of slab A is twice that of B. The first surface of slab A is maintained at 100°C, while the second surface of slab B is maintained at 25°C. The temperature at contact of their surfaces is

a) 62.5°C

b) 45°C

c) 55°C

d) 85°C

456. The ratio of energy of emitted radiation of a black body at 27°C and 927°C is

b) 1:16

c) 1:64

d) 1:256

457. A metal sphere of radius r and specific heat c is rotated about an axis passing through its centre at a speed of *n* rotations per second. It is suddenly stopped and 50% of its energy is used in increasing its temperature. Then the rise in temperature of the sphere is

b) $\frac{1}{10} \frac{\pi^2 n^2}{r^2 c}$

c) $\frac{7}{8}\pi r^2 n^2 c$

d) $5\left[\frac{\pi rn}{14c}\right]^{-2}$

458. The SI unit of mechanical equivalent of heat is

a) Joule × Calorie

b) Joule/Calorie

c) Calorie \times Erg

d) Erg/Calorie

459. A glass flask of volume one litre at 0°C is fille, level full of mercury at this temperature. The flask and mercury are now heated to 100°C. How much mercury will spill out, if coefficient of volume expansion of mercury is 1.82×10^{-4} /°C and linear expansion of glass is 0.1×10^{-4} /°C respectively

a) 21.2 cc

b) 15.2 cc

c) 1.52 cc

460. Two rods of same length and material transfer a given amount of heat in 12 s, when they are joined end to end (ie, in series). But when they are joined in parallel, they will transfer same heat under same conditions in

d) 1.5 s

461. The amount of radiation emitted by a perfectly black body is proportional to

- a) Temperature of ideal gas scale
- b) Fourth root of temperature on ideal gas scale
- c) Fourth power of temperature on ideal gas scale
- d) Source of temperature on ideal gas scale
- 462. Distribution of energy in the spectrum of a black body can be correctly represented by
 - a) Wien's law
- b) Stefan's law
- c) Planck's law
- d) Kirchhoff's law
- 463. The graph shows the variation of temperature (T) of one *kilogram* of a material with the heat (H)supplied to it. At O, the substance is in the solid state. From the graph, we can conclude that

- a) T_2 is the melting point of the solid
- b) BC represents the change of state from solid to liquid
- c) $(H_2 H_1)$ represents the latent heat of fusion of the substance
- d) $(H_3 H_1)$ represents the latent heat of vaporization of the liquid
- 464. Heat capacity of a substance is infinite. It means
 - a) Heat is given out
 - b) Heat is taken in
 - c) No change in temperature whether heat is taken in or given out
 - d) All of the above
- 465. On a cold morning, a metal surface will feel colder to touch than a wooden surface because
 - a) Metal has high specific heat

b) Metal has high thermal conductivity

c) Metal has low specific heat

- d) Metal has low thermal conductivity
- 466. 1.56×10^5 J of heat is conducted through is 2 m² wall of 12 cm thick in one hour. Temperature difference between the two sides of the wall is 20°C. The thermal conductivity of the material of the wall is (in $Wm^{-1}K^{-1}$)
 - a) 0.11
- b) 0.13
- c) 0.15
- 467. Two rods P and Q have equal lengths. Their thermal conductivities are K_1 and K_2 and cross sectional areas are A_1 and A_2 . When the temperature at ends of each rod are T_1 and T_2 respectively, the rate of flow of heat through P and Q will be equal, if

a)
$$\frac{A_1}{A_2} = \frac{K_2}{K_1}$$

b)
$$\frac{A_1}{A_2} = \frac{K_2}{K_1} \times \frac{T_2}{T_1}$$
 c) $\frac{A_1}{A_2} = \sqrt{\frac{K_1}{K_2}}$ d) $\frac{A_1}{A_2} = \left(\frac{K_2}{K_1}\right)^2$

c)
$$\frac{A_1}{A_2} = \sqrt{\frac{K_1}{K_2}}$$

$$d) \frac{A_1}{A_2} = \left(\frac{K_2}{K_1}\right)^2$$

- 468. Which of the following is the example of ideal black body
 - a) Kajal
- b) Black board
- c) A pin hole in a box
- d) None of these
- 469. A solid substance is at 30°C. To this substance heat energy is supplied at a constant rate. Then temperature versus time graph is as shown in the figure. The substance is in liquid state for the portion (of the graph)

a) BC

b) CD

c) ED

- d) EF
- 470. A body cools in a surrounding which is at a constant temperature of θ_0 . Assume that of obeys Newton's law of cooling. Its temperature θ is plotted against time t. Tangents are drawn to the curve at the points $P(\theta = \theta_2)$ and $Q(\theta = \theta_1)$. These tangents meet the time axis at angles of ϕ_2 and ϕ_1 , as shown

	b) Lesser than 5 min	utes		
	c) Greater than 5 min	nutes		
	d) Lesser or greater	than 5 <i>minutes</i> depending	g upon the density of th	e liquid
4	197. The resistance of a re	esistance thermometer has	s values 2.71 and 3.70 a	ohm at 10°C and 100°C. The
	temperature at which	h the resistance is 3.26 oh	m is	
	a) 40°C	b) 50°C	c) 60°C	d) 70°C
4	98. Three identical rod	s A, B and C are placed	end to end. A tempera	ature difference is maintained
	between the free en	nds of A and C . The ther	mal productivity of B	is thrice that if C and half of that
			- 3	l is the thermal conductivity of
	rod A)			
				1
	a) $\frac{3}{2} KA$	b) 2 <i>KA</i>	c) 3 <i>KA</i>	d) $\frac{1}{3}$ KA
4	99. A copper block of n	nass 4 kg is heated in a f	urnance to a tempera	ture 425°C and then placed on a
-			4930 m an 1 m an	be (Specific heat of copper=500 J
		of fusion of ice=336 k J		be (Specific fleat of copper=300)
		rankanan umahili salaman di Sirenan katamat da mangan matagan	- 10 Per 12 12 12 12 12 12 12 12 12 12 12 12 12	4) 2 T l
	a) 0.5 kg	b) 1 kg	c) 1.5 kg	d) 2.5 kg
5	그러게 얼마 얼룩했다고 맛있다면 그 때에 얼마나 없었다.			ce, from solid state to liquid state,
	And the state of the second state of the second	re remains constant, is kno		D
_	a) Latent heat	b) Sublimation	c) Hoar frost	d) Latent heat of fusion
5				00°C.Its volume changes by
		ent of linear expansion f		
	a) 28.9 cc	b) 2.89 cc	c) 9.28 cc	d) 49.8 cc
5	502. The point on the pr	essure-temperature ph	ase diagram where al	l the three phases co-exist is
	called			
	a) Sublimation poin	nt	b) Fusion point	
	c) Triple point		d) Vaporization	point
5		rature T losses heat to the	V-5	are T_s by radiation. If the difference
	170	s small then, the rate of los	(77)	T 187
	a) $(T-T_s)$		c) $(T - T_s)^{1/2}$	d) $(T - T_s)^4$
5				ne black body is changed to 727°C
	then its radiating po		u y manumu saara ah k oo ah	
	a) 120 W	b) 240 W	c) 320 W	d) 360 W
5	605. Infrared radiations		<i></i>	•
	a) Spectrometer		c) Nanometer	d) Photometer
5		idiabatic change. Its specif		
	a) Zero	b) 1	c) ∞	d) None of these
-		t flows from one part of a	AND THE PARTY OF T	A THE STATE OF THE PROPERTY OF
	a) Uniform density	t nows ironi one part or a .	b) Density gradi	2016/2019 12:00 14:00 14:00 14:00 16:00 1
	c) Temperature grad	lient	d) Uniform temp	
5	50 N N N N N N N N N N N N N N N N N N N		350	re heated together after wrapping a
	paper on it, the pape		or same shape. They a	re neuteu together after wrapping a
	a) Silver	b) Copper	c) Brass	d) Wood
5	MINING TO THE PERSON OF THE PE			at 40°C. The final temperature will
	be	ropped in a beatter cont	anning 20 g or water t	it to d. The martemperature win
		b) 16°C	c) 8°C	d) 24°C
	a) 32°C	b) 16°C	C) O C	uj 24 C

CLICK HERE >>>

510	A conductor of area of	cross-section 100 cm ² an	nd length 1 cm has coeffic	cient of thermal
	conductivity 0.76cals	1 m $^{-1}$ K $^{-1}$. If 30 cal of hear	t flows through the condi	uctor per second. Find the
	temperature difference	e across the conductor.		
	a) 40°C	b) 20°C	c) 25°C	d) 35°C
511	. Two spherical black bod	ies of radii r_1 and r_2 and wit	th surface temperature T_1 a	and T_2 respectively radiate
	the same power. Then th	e ratio of r_1 and r_2 will be	170	
	a) $\left(\frac{T_2}{T_1}\right)^2$	b) $\left(\frac{T_2}{T_1}\right)^4$	c) $\left(\frac{T_1}{T_2}\right)^2$	d) $\left(\frac{T_1}{T_2}\right)^4$
	$a_{J}\left(\overline{T_{1}}\right)$	$\overline{T_1}$	$(\overline{T_2})$	$(\overline{T_2})$
512	. At a common temperatur	re, a block of wood and a bl	ock of metal feel equally co	ld or hot. The temperature
	of block of wood and blo	ck of metal are		
	a) Equal to temperature	of the body	b) Less than the tempera	ture of the body
	c) Greater than tempera	and the second s	d) Either (b) or (c)	
513	\$155	This temperature is approx		
	a) 215°F	b) −297° <i>F</i>	c) 329°F	d) 361°F
514	(47)	ls of metal are welded end t		TO 22
		f the rods are welded as she	own in figure (ii), the same	amount of heat will flow
	through the rods in			
	0°C 100°C	100°C		
	(i)	(ii)		
	a) 1 minute	b) 2 minutes	c) 4 minutes	d) 16 minutes
515	. When the temperature o	f a rod increases from t to t	$t + \Delta t$, its moment of inertia	a increases from I to $I + \Delta I$.
	If α be the coefficient of I	inear expansion of the rod,	then the value of $\frac{\Delta I}{I}$ is	
		b) $\alpha \Delta t$		d) $\frac{\Delta t}{\alpha}$
	a) 2 <i>α</i> Δ <i>t</i>	353	_	cc
516				0.012×10^5 Pa at 12°C is
	(Take vapour pressure	e of water at this tempera	ture as $0.016 \times 10^5 \text{ Pa}$)	
	a) 70%	b) 40%	c) 75%	d) 25%
517	. A brass disc fits simply in	n a hole of a steel plate. The	disc from the hole can be le	oosened if the system
	a) First heated then cool	ed	b) First cooled then heate	ed
	c) Is heated		d) Is cooled	
518	. According to Wien's law	2	77	
	a) $\lambda_m T = \text{constant}$	b) $\frac{\lambda_m}{T}$ = constant	c) $\frac{T}{\lambda_m}$ = constant	d) $T + \lambda_m = \text{constant}$
519	. Mode of transmission of	heat, in which heat is carrie	ed by the moving particles,	is
	a) Radiation	b) Conduction	c) Convection	d) Wave motion
520	The radiation emitted	by a star A is $10,000$ time	es that of the sun. If the su	urface temperature of the
	sun and the star A are	6000 K and 2000 K respe	ectively, the ratio of the ra	adii of the star A and the
	sun is			
	a) 300:1	b) 600:1	c) 900:1	d) 1200:1
521	An iron bar of length 1	0m is heated from 0°C to	100°C. If the coefficient of	of linear thermal
	(07)	\times 10 ⁻⁶ °C ⁻¹ , the increase		
	a) 0.5 cm	b) 1.0 cm	c) 1.5 cm	d) 2.0 cm
522			-	length is 0.2%. What is the
	percentage increase in it		- P	7,000
	a) 0.6%	b) 0.10%	c) 0.2%	d) 0.4%
523		difference between the boo	ly and the surroundings the	
	of loss heat R and the ter	nperature of the body is de	picted by	

- 524. The spectral energy distribution of a star is maximum at twice temperature as that of sun. the total energy radiated by star is
 - a) Twice as that of the sun

- b) Same as that of the sun
- c) Sixteen times as that of the sun
- d) One-sixteenth of the sun
- 525. The temperature of a liquid drops from 365K to 361 K in 2 minutes. Find the time during which temperature of the liquid drops from 344 K to 342K. Temperature of room is 293 K
 - a) 84 s

- 526. A block of ice at -10° c slowly heated and converted to steam at 100°C. Which of the following curves represents this phenomenon qualitatively?

- 527. The correct value of 0°C on Kelvin scale will be
 - a) 273.15 K
- b) 273.00 K
- c) 273.05 K
- d) 273.63 K
- 528. If temperature of a black body increases from 7°C to 287°C, then the rate of energy radiation increases by
- b) 16

c) 4

- d) 2
- 529. Consider two insulating sheets with thermal resistances R_1 and R_2 as shown in figure. The temperature θ is

- $a) \frac{\theta_1 R_2 + \theta_2 R_1}{R_1 + R_2}$

- b) $\frac{(\theta_1 + \theta_2)R_1R_2}{R_1^2 + R_2^2}$ c) $\frac{\theta_1R_1 + \theta_2R_2}{R_1 + R_2}$ d) $\frac{\theta_1\theta_2 R_1R_2}{(\theta_1 + \theta_2)(R_1R_2)}$

530. The maximum energy in thermal radiation from a source occur	rs at the wavelength 4000Å. The										
effective temperature of the source is											
a) 7325 K b) 800 K c) 10 ⁴ K	d) 10 ⁶ K										
531. Wien's displacement law for emission of radiation can be writt	en as										
a) λ_{\max} is proportional to absolute temperature(T)											
b) $\lambda_{ m max}$ is proportional to square of absolute temperature(T^2)											
c) λ_{max} is inversely proportional to square of absolute temperature(T)											
λ_{max} is inversely proportional to square of absolute temperature (T^2)											
$(\lambda_{max}$ =wavelength whose energy density is greatest)											
532. Solids expand on heating because											
a) Kinetic energy of the atoms increases											
b) Potential energy of the atoms increases											
c) Total energy of the atoms increases											
d) The potential energy curve is asymmetric about the equilibrium d	· 이렇게 모르게 아니는 아이지 않는데 아무를 걸려가면 하고 있는데 아이를 하게 하는데 하는데 하다면										
533. On which of the following scales of temperature, the temperature is a a) Celsius b) Fahrenheit c) Reaumur	never negative d) Kelvin										
534. 0.1 m ³ of water at 80°C is mixed with 0.3m ³ of water at 60°C. T											
mixture is	ne mai temperature or the										
a) 65°C b) 70°C c) 60°C	d) 75°C										
535. A container contains hot water at 100°C. If in time T_1 temperature fall	and the second s										
falls to 60°C from 80°C, then	ils to ou cand in time 12 temperature										
a) $T_1 = T_2$ b) $T_1 > T_2$ c) $T_1 < T_2$	d) None										
536. The temperature on Celsius scale is 25°C. What is the corresponding	5 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C										
a) $40^{\circ}F$ b) $77^{\circ}F$ c) $50^{\circ}F$	d) 45°F										
537. A black body emits radiations of maximum intensity for the wa	velength of 5000Å when the										
temperature of the body is 1227°C. If the temperature of the bo											
maximum intensity would be observed at	* * *										
a) 1000Å b) 2000Å c) 5000Å	d) 3000Å										
538. If the length of a cylinder on heating increases by 2%, the area of its											
a) 0.5% b) 2% c) 1%	d) 4%										
539. A body takes 5 minutes for cooling from 50°C to 40°C. Its temperature	re comes down to 33.33°C in next 5										
minutes. Temperature of surroundings is											
a) 15°C b) 20°C c) 25°C	d) 10°C										
540. A bubble of 8 mole of helium is submerged at a certain depth in water	re and the transfer and the terms of the states that the transfer of the terms of the terms of the transfer and the transfer										
by 30°C. How much that is added approximately to helium during ex	1000										
a) 4000 <i>J</i> b) 3000 <i>J</i> c) 3500 <i>J</i>	d) 5000 <i>J</i>										
541. A thermos flask is polished well											
a) To make attractive b) For shining c) To absorb all radiations from outside d) To reflect all	l radiations from outside										
542. In which mode of transmission, the heat waves travel along str											
a) Thermal radiation b) Forced con											
c) Natural convection d) Thermal co											
543. If on heating liquid through 80°C, the mass expelled is $(1/100)^{\text{th}}$ of m											
apparent expansion of liquid is	mass sum remaining, the coefficient of										
a) 1.25×10^{-4} /°C b) 12.5×10^{-4} /°C c) 1.25×10^{-5}	/°C d) None of these										
2)	, 100 mg/20070000000000000000000000000000000000										

544. A long metallic bar is carrying heat from one of its ends to the other end under steady-state. The variation of temperature θ along the length x of the bar from its hot end is best described by which of the following figure?

545. 300 gm of water at 25°C is added to 100 g of ice at 0°C. The final temperature of the mixture is

a)
$$-\frac{5}{3}$$
°C

b)
$$-\frac{5}{2}$$
 °C

546. A black body is at a temperature 300 K. It emits energy at a rate, which is proportional to

b) $(300)^2$

c) $(300)^3$

547. A centigrade and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registers 140°. What is the fall in temperature as registered by the Centigrade thermometer

a) 30°

b) 40°

c) 60°

d) 80°

548. Out of the following, in which vessel will the temperature of the solution be higher after the salt is completely dissolved

a) A

b) B

c) Equal in both

d) Information is not sufficient

549. Two uniform brass rods A and B of lengths l and 2l and radii 2r and r respectively are heated to the same temperature. The ratio of the increase in the volumes of *A* to that of *B* is

a) 1:1

b) 1:2

c) 2:1

550. Two conducting rods A and B of same length and cross-sectional area are connected (i) In series (ii) In parallel as shown. In both combination a temperature difference of 100°C is maintained. If thermal conductivity of A is 3K and that of B is K then the ratio of heat current flowing in parallel combination to that flowing in series combination is

a) $\frac{16}{3}$

b) $\frac{3}{16}$

c) $\frac{1}{1}$

d) $\frac{1}{3}$

551. Calorimeters are made of which of the following

- a) Glass
- b) Metal
- c) Wood
- d) Either (a) or (c)

552. In a closed room, which method is based on gravitation

- a) Conduction
- b) Convection
- c) Radiation
- d) All of these

553. Two thermometers *A* and *B* are exposed in sun light. The valve of *A* is pointed black, but that of *B* is not pointed. The correct statement regarding this case is

- a) Temperature of A will rise faster than B but the final temperature will be the same in both
- b) Both A and B show equal rise in beginning
- c) Temperature of A will remain more than B
- d) Temperature of B will rise faster

554. The wavelength of maximum energy, released during an atomic explosion was 2.93×10^{-10} m. Given that the Wien's constant is 2.93×10^{-3} m - K, the maximum temperature attained must be of the order of

- a) 10^{-7} K
- b) 10⁷ K
- c) 10^{-3} K
- d) $5.86 \times 10^7 \text{ K}$

555. Amount of heat required to raise the temperature of a body through 1K is called its

- a) Water equivalent
- b) Thermal capacity
- c) Entropy
- d) Specific heat

556. Surface of the lake is at 2°C. Find the temperature of the bottom of the lake

a) 2°0

b) 3°C

c) 4°C

d) 1°C

557. Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature T_0 , while box B contains one mole of helium at temperature T_0 . The boxes are then put into thermal contact with each other and heat flows between them until the gases reach a common final temperature (Ignore the heat capacity of boxes). Then, the final temperature of the gases, T_f , in terms of T_0 is

- a) $T_f = \frac{7}{3}T_0$
- b) $T_f = \frac{3}{2}T_0$
- c) $T_f = \frac{5}{2}T_0$
- $d) T_f = \frac{3}{7} T_0$

558. The quantity of heat which crosses per unit area of a metal plate during conduction depends upon

a) The density of the metal

- b) The temperature gradient perpendicular to the
- c) The temperature to which the metal is heated
- d) The area of the metal plate

THERMAL PROPERTIES OF MATTER

: ANSWER KEY:															
1)	a	2)	a	3)	d	4)	اء	157)	b	158)	a	159)	d	160)	b
5)	b	6)	b	7)	c	8)	5500	161)	b	162)	c	163)	b	164)	a
9)	a	10)	c	11)	c	12)		165)	b	166)	c	167)	c	168)	c
13)	d	14)	d	15)	d	16)	- 1	169)	b	170)	a	171)	d	172)	c
17)	b	18)	d	19)	a	20)		173)	b	174)	b	175)	a	176)	c
21)	d	22)	а	23)	d	24)	0000	177)	c	178)	a	179)	d	180)	a
25)	b	26)	a	27)	c	28)	d	181)	b	182)	b	183)	d	184)	a
29)	b	30)	c	31)	c	32)	a	185)	d	186)	c	187)	d	188)	d
33)	b	34)	a	35)	b	36)	a	189)	C	190)	c	191)	a	192)	c
37)	b	38)	a	39)	b	40)	a	193)	c	194)	C	195)	a	196)	b
41)	d	42)	a	43)	a	44)	b	197)	d	198)	a	199)	a	200)	d
45)	C	46)	c	47)	d	48)	с	201)	c	202)	b	203)	a	204)	b
49)	b	50)	d	51)	a	52)	a	205)	a	206)	b	207)	d	208)	a
53)	d	54)	c	55)	b	56)	b	209)	a	210)	C	211)	d	212)	b
57)	b	58)	d	59)	C	60)	b	213)	a	214)	C	215)	C	216)	b
61)	c	62)	d	63)	c	64)	с	217)	a	218)	c	219)	a	220)	c
65)	d	66)	d	67)	d	68)	с	221)	a	222)	C	223)	a	224)	c
69)	b	70)	c	71)	a	72)	С	225)	b	226)	c	227)	a	228)	d
73)	c	74)	a	75)	C	76)	b	229)	C	230)	b	231)	b	232)	d
77)	b	78)	c	79)	b	80)	c	233)	b	234)	a	235)	b	236)	C
81)	d	82)	c	83)	C	84)	d	237)	a	238)	d	239)	d	240)	a
85)	b	86)	c	87)	d	88)	c	241)	c	242)	a	243)	d	244)	b
89)	b	90)	a	91)	d	92)	b	245)	b	246)	C	247)	d	248)	d
93)	b	94)	a	95)	a	96)	d	249)	a	250)	a	251)	b	252)	b
97)	C	98)	d	99)	b	100)	a	253)	C	254)	a	255)	a	256)	d
101)	d	102)	a	103)	d	104)	b	257)	b	258)	b	259)	C	260)	a
105)	b	106)	c	107)	d	108)	b	261)	a	262)	a	263)	c	264)	C
109)	a	110)	a	111)	b	112)	a	265)	a	266)	b	267)	a	268)	C
113)	a	114)	c	115)	c	116)	a	269)	a	270)	d	271)	a	272)	a
117)	d	118)	a	119)	b	120)	- 1	273)	a	274)	a	275)	d	276)	C
121)	C	122)	a	123)	b	124)	- 1	277)	b	278)	a	279)	a	280)	a
125)	a	126)	b	127)	d	128)	- 1	281)	b	282)	b	283)	c	284)	C
129)	C	130)	d	131)	b	132)	6000	285)	C	286)	C	287)	b	288)	d
133)	a	134)	b	135)	C	136)		289)	C	290)	a	291)	a	292)	d
137)	a	138)	C	139)	C	140)		293)	c	294)	d	295)	c	296)	b
141)	C	142)	c	143)	a	144)	- 1	297)	b	298)	C	299)	b	300)	b
145)	d	146)	b	147)	a	148)		301)	b	302)	b	303)	d	304)	a
149)	a	150)	a	151)	d	152)	-	305)	C	306)	C	307)	a	308)	b
153)	C	154)	a	155)	b	156)	a	309)	a	310)	d	311)	b	312)	C

313)	d	314)	d	315)	a	316)	b	441)	b	442)	b	443)	b	444)	b
317)	c	318)	a	319)	b	320)	d	445)	b	446)	a	447)	b	448)	a
321)	a	322)	d	323)	c	324)	С	449)	d	450)	d	451)	d	452)	a
325)	c	326)	c	327)	c	328)	d	453)	a	454)	c	455)	a	456)	d
329)	d	330)	a	331)	a	332)	d	457)	a	458)	b	459)	b	460)	b
333)	a	334)	c	335)	b	336)	b	461)	c	462)	C	463)	c	464)	C
337)	a	338)	c	339)	b	340)	c	465)	b	466)	b	467)	a	468)	c
341)	a	342)	c	343)	d	344)	c	469)	b	470)	b	471)	b	472)	C
345)	c	346)	b	347)	a	348)	b	473)	a	474)	c	475)	b	476)	a
349)	b	350)	a	351)	d	352)	b	477)	a	478)	C	479)	a	480)	a
353)	a	354)	b	355)	c	356)	c	481)	c	482)	d	483)	a	484)	C
357)	d	358)	c	359)	c	360)	d	485)	C	486)	a	487)	b	488)	b
361)	c	362)	c	363)	d	364)	b	489)	c	490)	b	491)	d	492)	c
365)	c	366)	a	367)	b	368)	b	493)	a	494)	d	495)	b	496)	c
369)	a	370)	a	371)	d	372)	b	497)	b	498)	d	499)	d	500)	d
373)	d	374)	a	375)	c	376)	b	501)	a	502)	c	503)	a	504)	C
377)	b	378)	d	379)	a	380)	c	505)	b	506)	a	507)	c	508)	d
381)	a	382)	b	383)	a	384)	b	509)	d	510)	a	511)	a	512)	a
385)	b	386)	d	387)	b	388)	c	513)	b	514)	a	515)	a	516)	c
389)	a	390)	c	391)	C	392)	c	517)	d	518)	a	519)	c	520)	c
393)	a	394)	C	395)	b	396)	b	521)	b	522)	a	523)	c	524)	C
397)	a	398)	a	399)	b	400)	a	525)	a	526)	a	527)	a	528)	b
401)	b	402)	d	403)	b	404)	b	529)	a	530)	a	531)	c	532)	d
405)	c	406)	c	407)	a	408)	b	533)	d	534)	a	535)	c	536)	b
409)	b	410)	b	411)	a	412)	c	537)	d	538)	d	539)	b	540)	d
413)	C	414)	C	415)	d	416)	b	541)	d	542)	a	543)	a	544)	b
417)	d	418)	d	419)	b	420)	c	545)	d	546)	d	547)	b	548)	b
421)	C	422)	a	423)	a	424)	c	549)	C	550)	a	551)	b	552)	b
425)	a	426)	C	427)	b	428)	c	553)	a	554)	b	555)	b	556)	C
429)	C	430)	d	431)	d	432)	d	557)	b	558)	b				
433)	b	434)	d	435)	b	436)	c								
437)	C	438)	b	439)	a	440)	d								

THERMAL PROPERTIES OF MATTER

: HINTS AND SOLUTIONS :

1 (a)

The rate of heat loss is proportional to the difference in temperature. The difference of temperature between the tea in cup *A* and the surrounding is reduced, so it loses less heat. The tea in cup *B* loses more heat because of large temperature difference. Hence the tea in cup *A* will be hotter

2 (a)

The Stefan's law,

 $E = \sigma T^4$ where σ is Stefan's constant,

Given, $T_1 = 27^{\circ}\text{C} = 27 + 273 = 300 \text{ K}$ $T_2 = 84^{\circ}\text{C} = 273 + 84 = 357 \text{ K}$

$$\therefore \frac{E_1}{E_2} = \frac{T_1^4}{T_2^4} \\
= \frac{(300)^4}{(357)^4} = \frac{1}{(1.19)^4}$$

Rate of increase of energy is

$$\frac{E_2}{E_1} = (1.19)^4 = 2$$

3 (d)

$$E \propto AT^4 \Rightarrow \frac{E_{\rm sphere}}{E_{\rm Disc}} = \frac{4\pi r^2}{2\pi r^2} \times \left(\frac{T}{T}\right)^4 = \frac{2}{1}$$

4 (a)

Here, $\alpha(\text{steel}) = 1.1 \times 10^{-5} \, \text{°C}^{-1}$

 $\alpha(\text{copper}) = 1.7 \times 10^{-5} \text{°C}^{-1}$

$$\frac{l_0(s)}{l_0(c)} = \frac{\alpha(c)}{\alpha(s)} = \frac{1.7 \times 10^{-5}}{1.1 \times 10^{-5}} = 1.545$$

 $l_0(s) = 1.545l_0(c)$

Also, $l_0(s) - l_0(c) = 5$

 $0.545l_0(c) = 5$

$$l_0(c) = \frac{5}{0.545} = 9.17 \text{ cm}$$

And $l_0(s) = 1.545 \times 9.17$ cm 14.17 cm

6 (b

$$K_1: K_2 = l_1^2: l_2^2 \Rightarrow \frac{l_1}{l_2} = \sqrt{\frac{K_1}{K_2}} = \sqrt{\frac{10}{9}} = \frac{\sqrt{10}}{3}$$

7 (c

- $\frac{T_2}{T_1} = \frac{\lambda_{m_1}}{\lambda_{m_2}} = \frac{1.75}{14.35} \Rightarrow T_2 = \frac{1.75}{14.35} \times 1640 = 200 K$
- 8 **(b)**

According to Newton's law of cooling

Rate of cooling ∝ Temperature difference

$$\Rightarrow -\frac{d\theta}{dt} \propto (\theta - \theta_0) \Rightarrow -\frac{d\theta}{dt} = \alpha(\theta - \theta_0) \ [\alpha = \theta_0]$$

constant]

$$\Rightarrow \int_{\theta_1}^{\theta} \frac{d\theta}{(\theta - \theta_0)} = -\alpha \int_{0}^{1} dt \Rightarrow \theta$$
$$= \theta_0 + (\theta_1 - \theta_0)e^{-\alpha t}$$

This relation tells us that, temperature of the body varies exponentially with time from θ_1 to θ_0 Hence graph (b) is correct

9 (a

For small difference of temperature, it is the special case of Stefan's law

10 (c)

$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{E_2}{20} = \left(\frac{2T}{T}\right)^4 = 16 \Rightarrow E_2$$
$$= 320 \ kcal/m^2 min$$

11 (c)

All wavelength are emitted

12 (c)

Temperature of liquid oxygen will first increase in the same phase. The phase change (liquid to gas) will take place. During which temperature will remain constant. After that temperature of oxygen in gaseous state will further increase.

13 (d)

$$W = JQ \Rightarrow (2m)gh = J \times m'c\Delta\theta$$

\Rightarrow 2 \times 5 \times 10 \times 10 = 4.2(2 \times 1000 \times \Delta\theta)

$$\Rightarrow \Delta\theta = 0.1190^{\circ}\text{C} = 0.12^{\circ}\text{C}$$

Given
$$A_1 = A_2$$
 and $\frac{K_1}{K_2} = \frac{5}{4}$
 $U_1 = \frac{l_1}{l_2} = \frac{l_1}{l_2} = \frac{l_1}{l_1} = \frac{K_1}{l_2}$

$$: R_1 = R_2 \Rightarrow \frac{l_1}{K_1 A} = \frac{l_2}{K_2 A} \Rightarrow \frac{l_1}{l_2} = \frac{K_1}{K_2} = \frac{5}{4}$$

$$V=V_0(1+\gamma\Delta\theta)\Rightarrow$$
 Change in volume $V-V_0=\Delta V=A.\,\Delta l=V_0\gamma\Delta\theta$

$$\Rightarrow \Delta l = \frac{V_0 \cdot \gamma \Delta \theta}{A} = \frac{10^{-6} \times 18 \times 10^{-5} \times (100 - 0)}{0.004 \times 10^{-4}}$$

$$=45 \times 10^{-3} m = 4.5 cm$$

16 (d)

According to Kirchhoff's law the ratio of emissive power to absorptive power is same for all surfaces at the same temperature and is equal to the emissive power of a perfectly black body at that temperature

Hence,
$$\frac{e_1}{a_1} = \frac{e_2}{a_2} = \cdots \left[\frac{E}{A} \right]$$
 perfectly black body

Now, since $(E\lambda)_{black}$ is constant at a given temperature, this implies that good absorber is a good emitter (or radiator).

17 (b)

When water falls from a height, it has potential energy (mgh),

this is used in heating up the water $(mc\Delta\theta)$. Hence, we have

$$mgh = mc\Delta\theta$$

$$\Delta\theta = \frac{gh}{c}$$

$$= \frac{9.8 \times 500}{4.2 \times 10^3} = 1.16^{\circ}\text{C}$$

18 (d)

The moment of inertia of a solid sphere about the axis along its diameter is

$$I = \frac{2}{5} mR^2 \implies I \propto R^2$$

$$\therefore \qquad \frac{\Delta I}{I} \times 100 = 2 \left[\frac{\Delta R}{R} \right] 100$$

But
$$\alpha = \frac{\Delta R}{R \times \Delta t} \Rightarrow \frac{\Delta R}{R} = \alpha \Delta t$$

$$\therefore \frac{\Delta I}{I} \times 100 = 2(\alpha)(\Delta t)100$$

$$= 2(10^{-5})(200)(100)$$

$$= 0.4\%$$

19 (a)

We know
$$\lambda_{max}T = b$$

$$\Rightarrow T = \frac{b}{\lambda_{\text{max}}} = \frac{2898 \times 10^{-6}}{289.8 \times 10^{-9}} = 10^4 K$$

According to Stefan's law

$$E = \sigma T^4 = (5.67 \times 10^{-8})(10^4)^4$$
$$= 5.67 \times 10^8 W/m^2$$

20 (b)

In vapor to liquid phase transition, heat liberates

21 (d)

Black and rough surfaces are good absorber that's why they emit well. (Kirchhoff's law)

22

Rate of heat loss per unit area due to radiation i.e. emissive power $e = \varepsilon \sigma (T^4 - T_0^4)$

$$= 0.6 \times \frac{17}{3} \times 10^{-8} \times [(400)^4 - (300)^4]$$

$$= 3.4 \times 10^{-8} \times (175 \times 10^{8}) = 3.4 \times 175$$
$$= 595 I/m^{2} \times s$$

23 (d)

For the two sheets $H_1 = H_2[H]$ = Rate of heat

$$\Rightarrow \frac{(100 - \theta)}{R} = \frac{(\theta - 20)}{3R} \Rightarrow \theta = 80^{\circ}\text{C}$$

$$\frac{\Delta T}{\Delta t} = KA\left(\frac{\Delta T}{\Delta x}\right) = K(\pi r^2) \frac{\Delta T}{(l)}$$

 $\therefore \left(\frac{\Delta Q}{\Delta t}\right) \propto \frac{r^2}{l}$, which is maximum in case (a).

The formula for rate of cooling is given by $=\frac{mc\theta}{t}$

As, $mass = volume \times density$

Mass of sphere = $\frac{4}{3}\pi r^3 \times \rho$, where ρ is density

Mass of unit area =
$$\frac{\frac{4}{3}\pi r^3 \times \rho}{4\pi r^2} = \frac{1}{3}r\rho$$

Hence, rate of cooling per unit area must be proportional to $r \rho$, (here r is the radius of sphere and ρ is the density

Hence, ratio of rate of cooling for two spheres is

$$=\frac{r_1\rho_1}{r_2\rho_2}$$

Where, r_1 : $r_2 = 1$: 2 and ρ_1 : $\rho_2 = 2$: 1

$$=\frac{1}{2}\times\frac{2}{1}=1:1$$

27

Heat given for raising the temperature of Wgof water from

 0° C to 100° C = $W \times 1 \times 100$ cal

Time taken = 10×60 s.

 \therefore Heat given per second = $\frac{W \times 1 \times 100}{10 \times 60}$ cal

Heat given out to convert Wg to steam = $W \times$

This is the heat supplied in 55×60 s

$$\therefore \text{ Heat given} = 100 \times W \times \frac{55 \times 60}{10 \times 60} = WL$$

$$L = \frac{100 \times 55 \times 60}{10 \times 60} = 100 \times 5.5$$

$$L = 550 \text{ calg}^{-1}$$

28 (d)

As batteries wear out, temperature of filament of flash light attains a lesser value, therefore intensity of radiation reduces. Also dominating wavelength (λ_m) in spectrum, which is the red colour, increases.

29 (b)

$$E_2 = E_1 \frac{T_2^4}{T_1^4} = Q \times \frac{(273 + 151)^4}{(273 + 27)^4} = \left(\frac{424}{300}\right)^4$$
$$= 3.990 = 40$$

30 (c)

Increase in area of disc

$$\Delta A = A(2\alpha)\Delta t$$

= $\pi (0.5)^2 (2 \times 11 \times 10^{-6}) \times 10$
= 0.000055π

New area of the disc,

$$A' = A + \Delta A$$

$$A' = \pi(0.5)^2 + 0.000055\pi$$

Or
$$\pi r'^2 = 0.250055 \pi m^2$$

Or
$$r'^2 = 0.500055$$
m

Increase in moment of inertia,

$$\frac{I'-I}{I} = \frac{(0.500055)^2 - (0.5)^2}{(0.5)^2}$$
$$= 0.00022 = 0.022\%$$

31 (c)

The densest layer of water will be at bottom. The density of water is maximum at 4° C. So the temperature of bottom of lake will be 4° C

32 (a)

$$\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4 \Rightarrow \frac{E}{E_2} = \left(\frac{273 + 0}{273 + 273}\right)^4 \Rightarrow E_2 = 16 E$$

33 **(b**)

As $\alpha_B > \alpha_A$, therefore, strip *B* will appear on outer side.

34 (a)

The situation is given in the figure. Let θ be the temperature at point C.

We know that the rate flow of heat

$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{d}$$

Here, K = coefficient of thermal conductivity

A=area of cross-section

$$\Rightarrow \frac{KA(100-\theta)}{40} = \frac{KA(\theta-10)}{60}$$

$$\frac{100-\theta}{2} = \frac{\theta-10}{3}$$

$$300 - 3\theta = 2\theta - 20$$

$$5\theta = 320$$

$$\theta = \frac{320}{5}$$

35 **(b)**

According to Newton's law of cooling

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

In the first case,

$$\Rightarrow \frac{80-64}{5} = K \left[\frac{80+64}{2} - \theta_0 \right]$$

$$\Rightarrow 3.2 = K[72 - \theta_0] \qquad \dots(i)$$

In the second case,

$$\Rightarrow \frac{64-52}{5} = K \left[\frac{64+52}{2} - \theta_0 \right]$$

$$\Rightarrow 2.4 = K[58 - \theta_0] \qquad \dots(ii)$$

Dividing Eq. (i) by Eq. (ii), we get

$$\frac{3.2}{2.4} = \frac{72 - \theta_0}{58 - \theta_0}$$

$$185.6 - 3.2\theta_0 = 172.8 - 2.4\theta_0$$

$$\Rightarrow$$
 $\theta_0 = 16^{\circ}\text{C}$

36 (a)

A perfectly black body is a good absorber of radiations falls on it. So it's absorptive power is 1

37 **(b)**

In steady state, temperature gradient = constant

 $\Rightarrow \theta_x = 70^{\circ}\text{C}$

38 (a)

In vacuum heat flows by the radiation mode only

39 **(b**)

In summer alcohol expands, density decreases. So 1 litre of alcohol will weigh less in summer than in winter

40 (a)

Rate of cooling
$$\frac{\Delta\theta}{t} = \frac{A\varepsilon\sigma(T^4 - T_0^4)}{mc}$$

As surface area, material and temperature difference are same, so rate of loss of heat is same 51 in both, the spheres. Now in this case rate of cooling depends on mass

 \Rightarrow Rate of cooling $\frac{\Delta\theta}{t} \propto \frac{1}{m}$

 $m_{solid} > m_{hollow}$. Hence hollow sphere will cool fast

41 (d)

$$T = 273.15 + t^{\circ}C \Rightarrow 0 = 273.15 + t^{\circ}C$$

 $\Rightarrow t = -273.15^{\circ}C$

42 (a)

If l_t be length of rod at t° C and l_0 at 0° C, then $l_t = l_0(1 + \alpha t)$

Where α is coefficient of linear expansion. $\Rightarrow l_t$ is proportional to α . Since $\alpha_c > \alpha_s$, therefore copper will expand more, so rod bends with copper on convex side and steel on concave side.

As
$$\alpha = \frac{\beta}{2} = \frac{\gamma}{3} \Rightarrow \alpha : \beta : \gamma = 1 : 2 : 3$$

During clear nights object on surface of earth radiate out heat and temperature falls. Hence option (a) is wrong

The total energy radiated by a body per unit time per unit area $E \propto T^4$. Hence option (c) is wrong Energy radiated per second is given by $\frac{Q}{t}$ =

 $PA\varepsilon\sigma T^4$

$$\Rightarrow \frac{P_1}{P_2} = \frac{A_1}{A_2} \cdot \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{r_1}{r_2}\right)^2 \cdot \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{1}{4}\right)^2 \left(\frac{4000}{200}\right)$$
$$= \frac{1}{1}$$

 $P_1 = P_2$, hence option (d) is wrong Newton's law is an approximate form of Stefan's law of radiation and works well for natural convection. Hence option (b) is correct

 $\frac{A-42}{110} = \frac{B-72}{220}$ $\frac{\stackrel{110}{A-42}}{110} = \frac{\stackrel{220}{A-72}}{220}$

$$A = 12$$

46 (c)

We know that thermal capacity of a body expressed in calories is equal to water equivalent of the body expressed in grams

47 (d)

Thermal capacity = $mc = 40 \times 0.2 = 8 \, cal/^{\circ}C$

$$\frac{d\theta}{dt} = -k(\theta - \theta_0)$$

$$\int_{\theta_0}^{t} \frac{d\theta}{\theta - \theta_0} = -k \int_0^t dt$$

$$\ln(\theta - \theta_0) = -kt + C$$

So graph is straight line

52 (a)

The volume of matter in portion AB of the curve is almost constant and pressure is decreasing. These are the characteristics of liquid state

53 (d)

According to Stefan's law $E = \sigma T^4$ $\Rightarrow \ln E = \ln \sigma + 4 \ln T \Rightarrow \ln E = 4 \ln T + \ln \sigma$ On comparing this equation with y = mx + CWe find that graph between $\ln E$ and $\ln T$ will be a straight line, having positive slope (m = 4) and intercept on $\ln E$ axis equal to $\ln \sigma$

54

Energy supplied = $0.93 \times 3600 \ joules =$ 3348 joules

Heat required to melt 10 gms of ice $= 10 \times 80 \times 4.18 = 3344$ joules Hence block of ice just melts

55 (b)

> Let the temperature of junction be θ then according to the following figure

$$H = H_1 + H_2$$

$$\Rightarrow \frac{3K \times A \times (100 - \theta)}{l}$$

$$= \frac{2KA(\theta - 50)}{l} + \frac{KA(\theta - 20)}{l}$$

$$\Rightarrow 300 - 3\theta = 3\theta - 120 \Rightarrow \theta = 70^{\circ}\text{C}$$

56 (b)

Melting point of ice decreases with increase in pressure (as ice expands on solidification)

57 (b)

> The surface temperature of the stars is determined using Wien's displacement law.

According to this (law) $\lambda_m T = b$ where b is Wien's constant whose value is 2.898×10^{-3} mK.

58 (d)

From Stefan's law of radiation,

$$E \propto T^4 \Rightarrow \frac{E_1}{E_2} = \frac{T_1^4}{T_2^4}$$

Given, $T_1 = T$, $T_2 = 2T$

$$\therefore \frac{E_1}{E_2} = \frac{(T)^4}{(2T)^4} = \frac{1}{2^4} = \frac{1}{16}$$

$$E_2 = 16 E_1$$

Heat taken by water from radiation

$$E = mc\Delta\theta$$

Where c is specific heat, $\Delta\theta$ the change in temperature and mthe mass.

$$E = m \times 1 \times (20.5 - 20)$$

$$E = m \times 0.5 \qquad ...(i)$$

When energy supplied is 16 times the previous one, then let temperature rise to θ^\prime

$$\therefore 16E = m \times 1 \times (\theta' - 20) \qquad \dots (ii)$$

Dividing Eq. (i) by (ii), we get

$$\frac{1}{16} = \frac{0.5}{\theta' - 20}$$

$$\Rightarrow \quad \theta' - 20 = 16 \times 0.5 = 8$$

$$\Rightarrow$$
 $\theta' = 20 + 8 = 28$ °C

59 (c)

Convection significantly transfer heat upwards (Gravity effect)

60 **(h**)

$$\lambda_{m_2} = \frac{T_1}{T_2} \times \lambda_{m_1} = \frac{2000}{3000} \times \lambda_{m_1} = \frac{2}{3} \lambda_{m_1} = \frac{2}{3} \lambda_m$$

61 (c)

From given curve,

Melting point for $A = 60^{\circ}$ C

And melting point for B = 20°C

Time taken by *A* for fusion = (6-2) = 4 minute Time taken by *B* for fusion = (6.5-4) = 2.5

minute

Then
$$\frac{H_A}{H_B} = \frac{6 \times 4 \times 60}{6 \times 2.5 \times 60} = \frac{8}{5}$$

62 (d)

According to Stefan's law,

$$F \propto T^4$$

or
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4$$

or
$$\frac{E_2}{E} = \left(\frac{T/2}{T}\right)^4 = \left(\frac{1}{2}\right)^4$$

or
$$E_2 = \frac{E}{16}$$

63 (c)

As is clear from figure.

$$\frac{dQ}{dt} = \frac{dQ_1}{dt} + \frac{dQ_2}{dt} \frac{K(A_1 + A_2)dT}{dx} = K_1 A_1 \frac{dT}{dx} + K_2 A_2 \frac{dT}{dx} K = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2}$$

64 **(c)**

The Stefan's law,

$$E = \sigma T^4$$

Given, $T_1 = 227$ °C = 227 + 273 = 500 K
 $T_2 = 727$ °C = 273 + 727 = 1000 K

$$\frac{E_1}{E_2} = \frac{T_1^4}{T_2^4}$$

$$\Rightarrow E_2 = \frac{T_2^4}{T_2^4} E_1$$

$$E_2 = \frac{(1000)^4}{(500)^4} \times 20$$

$$E_2 = 16 \times 20$$

$$E_2 = 320 \text{ cal m}^{-2} \text{s}^{-1}$$

65 (d)

$$\lambda_m T = 2892 \times 10^{-6} \Rightarrow T = \frac{2892 \times 10^{-6}}{14.46 \times 10^{-6}}$$

66 (d)

Growth of ice in a pond is conduction process governed by the relation $t = \frac{\rho L}{K \theta} \frac{y^2}{2}$

The ratio of times for thickness of ice from 0 to y; y to 2 y = 1:3

 \therefore Time taken to increase the thickness from 1 cm to 2 cm is equal to $3 \times 7 = 21$ h.

 $\begin{cases} 67 & \textbf{(d)} \\ \frac{Q}{t} = P = A\varepsilon\sigma T^4 \end{cases}$

68 (c)

When a copper ball is heated, it's size increases. As Volume \propto (radius)³ and Area \propto (radius)², so percentage increase will be largest in it's volume. Density will decrease with rise in temperature

69 (b)

$$\frac{Q_2}{Q_1} = \left(\frac{r_2^2}{r_1^2}\right)^2 \times \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{100}{1}\right)^2 \times \left(\frac{1}{2}\right)^4 = 625$$

70 (c)

Total energy radiated from a body

$$Q = A\varepsilon\sigma T^{4}t$$

$$\Rightarrow \qquad Q \propto AT^{4} \propto r^{2}T^{4} \qquad (\because A = 4\pi r^{2})$$

$$\Rightarrow \qquad \frac{Q_{P}}{Q_{Q}} = \left(\frac{r_{P}}{r_{Q}}\right)^{2} \left(\frac{T_{P}}{T_{Q}}\right)^{4}$$

$$= \left(\frac{8}{2}\right)^2 \left[\frac{(273 + 127)}{(273 + 527)}\right]^4 = 1$$

71 (a)

With temperature rise (same 20°C for both), steel scale and copper wire both expand. Hence length of copper wire w.r.t. steel scale or apparent length of copper wire after rise in temperature

$$\begin{aligned} L_{app} &= L'_{cu} - L'_{steel} \\ &= [L_0(1 + \alpha_{Cu}\Delta\theta) - L_0(1 \\ &+ \alpha_s\Delta\theta)] \end{aligned}$$

$$\Rightarrow L_{app} = L_0(\alpha_{Cu} - \alpha_s)\Delta\theta$$

= 80(17 × 10⁻⁶ - 11 × 10⁻⁶) × 20 = 0.0096 cm

∴ Length of the wire read = 80.0096 cm

72 **(c)**

Let n slabs each of length l, areas $A_1, A_2, A_3, \dots, A_n$ and thermal conductivities

 $K_1, K_2, K_3, \dots, K_n$ are connected in parallel, then,

$$K_{\rm eq} = \frac{\kappa_1 + \kappa_2 + \kappa_3 + \cdots + \kappa_n}{n}$$

For two slabs of equal area $K_{\text{eq}} = \frac{K_1 + K_2}{2}$

73 (c)

Ist case

$$ms_A(t - t_A) = ms_B(t_B - t)$$

 $s_A(16 - 12) = s_B(19 - 16)$
 $4s_A = 3s_B$

IInd case

$$ms_{B}(t - t_{B}) = ms_{C}(t_{C} - t)$$

$$s_{B}(23 - 19) = s_{C}(28 - 23)$$

$$4s_{B} = 5s_{C}$$

$$3s_{B} = \frac{15}{4}s_{C}$$

$$4s_{A} = 3s_{B} = \frac{15}{4}s_{C}$$

$$16s_{A} = 12s_{B} = 15s_{C} = k$$

$$s_{A}: s_{B}: s_{C} = \frac{1}{16}: \frac{1}{12}: \frac{1}{15}$$

$$s_{A} = \frac{k}{16}, \quad s_{C} = \frac{k}{15}$$

When A and Care mixed

$$ms_{A}(t - t_{A}) = ms_{C}(t_{C} - t)$$

$$\frac{k}{16}(t - 12) = \frac{k}{15}(28 - t)$$

$$15t - 180 = 448 - 16t$$

$$31t = 628$$

$$\Rightarrow \qquad t = 20.2^{\circ}C$$
74 (a)

According to energy conservation, change in kinetic energy appears in the form of heat (thermal energy)

$$\Rightarrow i.e.$$
 Thermal energy $=\frac{1}{2}m(v_1^2-v_2^2)$ $:$

$$W_{\text{(Joule)}} = \frac{Q}{\text{(Joule)}}$$
$$= \frac{1}{2} (100 \times 10^{-3})(10^2 - 5^2) = 3.75J$$

75 (c)

Open window behaves like a perfectly black body

76 **(b**)

Temperature of water just below the lower surface of ice layer is 0°C

77 **(b)**

Let L be the length of each rod.

Temperature of A = 60°C temperature of E = 10°C

Let $\theta_1, \theta_2, \theta_3$ be respective temperature of B, C, D. If $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6$ are the amounts of heat following/sec respectively from A to B; B to C; B to D; C to D; D to E and C to E, then using figure.

$$\begin{aligned} Q_1 &= \frac{0.46A(60 - \theta_1)}{L}, Q_2 = \frac{0.92A(\theta_1 - \theta_2)}{L} \\ Q_3 &= \frac{0.46A(\theta_1 - \theta_3)}{L}, Q_4 = \frac{0.92A(\theta_2 - \theta_3)}{L} \\ Q_5 &= \frac{0.46A(\theta_3 - 10)}{L}, Q_6 = \frac{0.92A(\theta_2 - 10)}{L} \\ \text{Now } Q_1 &= Q_2 + Q_3 \end{aligned}$$

$$\frac{0.46A(60 - \theta_1)}{L} = \frac{0.92A(\theta_1 - \theta_1)}{L}$$

$$= \frac{0.92A(\theta_1 - \theta_2)}{L} + \frac{0.46A(\theta_1 - \theta_3)}{L}$$

$$60 - \theta_1 = 2(\theta_1 - \theta_2) + \theta_1 - \theta_3$$

Or $4\theta_1 = 2\theta_2 - \theta_3 = 60^\circ$ (i)

Again,
$$Q_2 = Q_4 + Q_6$$
 gives

$$\theta_1 - 3\theta_2 - \theta_3 = 10^{\circ}$$
(ii)

Again,
$$Q_5 = Q_3 + Q_4$$
 given

$$\theta_1 + 2\theta_2 - 4\theta_3 = -10^\circ \qquad(iii)$$

Solving Eqs.(i), (ii) and (iii), we get $\theta_1 = 30^{\circ}\text{C}$, $\theta_2 = 20^{\circ}\text{C}$

 $\theta_1 = 30$ °C, $\theta_2 = 20$ °C, $\theta_3 = 20$ °C

78 **(c)** Let F = K - X

As
$$\frac{F-32}{9} = \frac{K-273}{5}$$

$$\therefore \frac{x-32}{9} = \frac{x-273}{5}$$

$$9x - 2457 = 5x - 160$$

$$4x - 2457 + 160 = 0$$

$$x = \frac{2297}{4} = 574.25^{\circ}$$

- 79 **(b)** $c = \frac{Q}{m \Delta \theta}$; as $\Delta \theta = 0$, hence c becomes ∞
- When the temperature of black body becomes equal to the temperature of the furnace, the black body will radiate maximum energy and it will be brightest of all. Initially it will absorb all the radiant energy incident on it. So, it is the darkest one.
- 81 **(d)**Radiated power by blackbody $P = \frac{Q}{t} = A\sigma T^4$ $\Rightarrow P \propto AT^4 \propto r^2 T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{T_1}{T_2}\right)^4$ $\Rightarrow \frac{440}{P_2} = \left(\frac{12}{6}\right)^2 \left(\frac{500}{1000}\right)^4 \Rightarrow P_2 = 1760 \text{ W}$
 - Temperature of interface $\theta = \frac{K_1 \theta_1 l_2 + K_2 \theta_2 l_1}{K_1 l_2 + K_2 l_1} = \frac{K \times 0 \times 2 + 3K \times 100 \times 1}{K \times 2 + 3K \times 1}$ $= \frac{300K}{5K} = 60^{\circ}\text{C}$
- 83 **(c)**Linear expansion $\Delta L = \alpha V \Delta T = \frac{FL}{AY}$ Stress = $\frac{F}{A} = \gamma \alpha \Delta T$

82 (c)

- 84 **(d)**Density of water is maximum at 4°C. In both heating and cooling of water from this temperature, level of water rises due to decrease in density, *i. e.*, water will over flow in both *A* and *B*
- 85 **(b)**As we know $\gamma_{\text{real}} = \gamma_{\text{app.}} + \gamma_{\text{vessel}}$ $\Rightarrow \gamma_{\text{app.}} = \gamma_{\text{glycerine}} \gamma_{\text{glass}}$ $= 0.000597 0.000027 = 0.00057/^{\circ}C$ 86 **(c)**Heat current, $\frac{dQ}{dt} = L.\left(\frac{dm}{dt}\right)$ Or $\frac{\text{Temperature difference}}{\text{Thermal resistance}} = L.\left(\frac{dm}{dt}\right)$

- Or $\left(\frac{dm}{dt}\right) \propto \frac{1}{\text{Thermal resistance}}$ Or $q \propto \frac{1}{R}$
- In the first case rods are in parallel and thermal resistance is $\frac{R}{2}$ while in second case rods are in series and thermal resistance is 2R.
- $\therefore \quad \frac{q_1}{q_2} = \frac{2R}{R/2} = \frac{4}{1}$

87

- A good absorber is a good emitter hence option (a) is wrong. Every body stops absorbing and emitting radiation at 0 *K* hence option (b) is wrong
- The energy of radiation emitted from a black body is not same for all wavelength hence (c) is wrong Plank's law relates the wavelength (λ) and temperature (T) according to the relation $E_{\lambda}d_{\lambda} = \frac{8\pi hc}{\lambda^5} \frac{1}{[e^{hc/kT}-1]} d_{\lambda}$
- Hence option (d) is correct 88 (c) From, $l_2 = l_1[1 + \alpha(t_2 - t_1)]$ $t_2 = t_1 + \frac{l_2 - l_1}{l_1 \alpha}$ $= 20 + \frac{-10^{-3}}{1.0 \times 2 \times 10^{-5}} = -30^{\circ}\text{C}$
- 89 **(b)**Thermoelectric thermometer is based on Seebeck
 Effect
- 91 **(d)** $\frac{Q_1}{Q_2} = \frac{T_1^4}{T_2^4} = \left(\frac{273 + 27}{273 + 127}\right)^4 = \left(\frac{300}{400}\right)^4 = \frac{81}{256}$ 92 **(b)**
 - Rate of cooling $(R) = \frac{\Delta\theta}{t} = \frac{A\epsilon\sigma(T^4 T_0^4)}{mc}$ $\Rightarrow R \propto \frac{A}{m} \propto \frac{\text{Area}}{\text{Volume}} \propto \frac{r^2}{r^3} \propto \frac{1}{r}$ $\Rightarrow \text{Rate } (R) \propto \frac{1}{r}$ $\propto \frac{1}{m^{1/3}} \left[\because m = \rho \times \frac{4}{3}\pi r^3 \Rightarrow r \right]$ $\propto m^{1/3}$ $\Rightarrow \frac{R_1}{R_2} = \left(\frac{m_2}{m_1}\right)^{1/3} = \left(\frac{1}{3}\right)^{1/3}$
 - Wavelength of radiation $\lambda_1=12000\text{\AA}$ Temperature of star $T_1=2600\text{ K}$ Wavelength of star spectrum $\lambda_2=5000\text{\AA}$ Temperature of star $T_2=?$

From Wien law

$$\lambda_1 T_1 = \lambda_2 T_2$$

$$T_2 = \frac{\lambda_1 T_1}{\lambda_2}$$

$$= \frac{12000 \times 2600}{5000}$$

$$T_2 = 6240 \text{ K}$$

94 (a)

According to the question,
$$\frac{1}{2} \times \frac{1}{2} mv^2 = m \times s \times \Delta T$$

 $\frac{1}{4} m \times 4 \times 10^4 = 125 \times m \times \Delta T$
 $\Delta T = \frac{4 \times 10^4}{500} = 80^{\circ} \text{C}$

95 (a)

Here,
$$p_0 = 50 \text{ cm}$$
, $p_{100} = 90 \text{ cm}$, $p_t = 60 \text{ cm}$

$$t = \frac{p_t - p_0}{p_{100} - p_0} \times 100 = \frac{(60 - 50) \times 100}{(90 - 50)} = 25^{\circ}\text{C}$$

96 (d)

According to Newton's law of cooling

$$\frac{\theta_2-\theta_1}{t}=K\left[\frac{\theta_1+\theta_2}{2}-\theta_S\right]$$

Where, θ_s is the temperature of the surroundings.

$$\frac{60-50}{10} = K \left[\frac{60+50}{2} - \theta_s \right]$$
$$1 = K[55 - \theta_s]$$

Similarly,
$$\frac{50-42}{10} = K(46 - \theta_s)$$

 $\frac{8}{10} = K(46 - \theta_s)$

...(ii)

Dividing Eq. (i) by Eq. (ii), we get $\frac{10}{8} = \frac{K(55 - \theta_S)}{K(46 - \theta_S)}$

$$\frac{10}{8} = \frac{K(55 - \theta_s)}{K(46 - \theta_s)}$$
$$\theta_s = 10^{\circ} \text{C}$$

97 (c)

According to Kirchhoff's law, a good emitter is also a good absorber

$$R_{\rm th} = \frac{\Delta T}{(\Delta Q/\Delta t)} = \frac{\Delta x}{KA} = \frac{l}{KA}$$

$$\lambda_m T = \lambda'_m T' \Rightarrow \frac{\lambda_m}{\lambda'_m} = \frac{T'}{T} = \frac{3000}{2000} = \frac{3}{2}$$

Time period,
$$T = 2\pi \sqrt{\frac{1}{g}}$$

$$\frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta l}{l} = \frac{1}{2} \alpha \Delta \theta$$

$$= \frac{1}{2} \times 12 \times 10^{-6} (40 - 20) = 12 \times 10^{-5}$$

$$\Delta T = T \times 12 \times 10^{-5}$$

$$= 24 \times 60 \times 60 \times 12 \times 10^{-5}$$

$$= 10.3 \text{ s day}^{-1}$$

101 (d)

Increase of vapour pressure increases the boiling point of water.

102 (a)

Temperature gradient $\frac{d\theta}{dx} = \frac{(125-25)^{\circ}C}{50 \text{ cm}} = 2^{\circ}C/cm$

According to Wien's law

$$\lambda_m \propto \frac{1}{\tau}$$

And from the figure

$$(\lambda_m)_1 < (\lambda_m)_3 < (\lambda_m)_2$$

Therefore, $T_1 > T_3 > T_2$

104 (b)

If suppose $K_{Ni} = K \Rightarrow K_{Al} = 3K$ and $K_{Cu} = 6K$ Since all metal bars are connected in series

So
$$\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{Cu} = \left(\frac{Q}{t}\right)_{Al} = \left(\frac{Q}{t}\right)_{Ni}$$

and $\frac{3}{K_{eq}} = \frac{1}{K_{Cu}} + \frac{1}{K_{Al}} + \frac{1}{K_{Ni}} = \frac{1}{6K} + \frac{1}{3K} + \frac{1}{K} = \frac{9}{6K}$
 $\Rightarrow K_{eq} = 2K$

Hence, it
$$\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{Cu}$$

$$\Rightarrow \frac{K_{eq}A(100-0)}{l_{Combination}} = \frac{K_{Cu}A(100-\theta_1)}{l_{Cu}}$$

$$\Rightarrow \frac{2KA(100-0)}{(25+10+15)} = \frac{6KA(100-\theta_1)}{25} \Rightarrow \theta_1$$

$$= 83.33^{\circ}C$$

Similar if
$$\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{Al}$$

$$\Rightarrow \frac{2K A(100 - 0)}{50} = \frac{3K A(\theta_2 - 0)}{15} \Rightarrow \theta_2 = 20^{\circ}\text{C}$$

If we fill nitrogen gas at high pressure above mercury level, the boiling point of mercury is increased which can extend the range upto 500°C.

106 (c)

Since specific heat = $0.6kcal/g \times ^{\circ}C = 0.6 cal/$

From graph it is clear that in a minute, the temperature is raised from 0°C to 50°C.

 \Rightarrow Heat required for a minute = $50 \times 0.6 \times 50 = 1500$ *cal*

Also from graph, Boiling point of wax is 200°C

107 (d)

We know that when solid carbondioxide is heated, it becomes vapour directly without passing through its liquid phase. Therefore it is called dry ice

108 (b)

Suppose conductivity of layer B is K, then it is 2K for layer A. Also conductivity of combination layers A and B is $K_S = \frac{2 \times 2K \times K}{(2K + K)} = \frac{4}{3}K$

Hence
$$\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{A}$$

 $\Rightarrow \frac{4}{3} \frac{KA \times 60}{2x} = \frac{2K \cdot A \times (\Delta \theta)_{A}}{x} \Rightarrow (\Delta \theta)_{A} = 20K$

109 (a)

Boiling occurs when the vapour pressure of liquid becomes equal to the atmospheric pressure. At the surface of moon, atmospheric pressure is zero, hence boiling point decreases and water begins to boil at 30°C

110 (a)

Temperature of interface

$$\theta = \frac{K_1 \theta_1 l_2 + K_2 \theta_2 l_1}{K_1 l_2 + K_2 l_1}$$

It is given that $K_{Cu} = 9K_s$. So, if $K_s = K_1 = K$, then

$$K_{Cu} = K_2 = 9K$$

$$\theta = \frac{9K \times 100 \times 6 + K \times 0 \times 18}{9K \times 6 + K \times 18}$$

$$= \frac{5400K}{72K} = 75^{\circ}C$$

111 **(b)**

Power radiated, $Q \propto AT^4$ and $\lambda_m T =$ constant. Hence, $Q \propto \frac{A}{(\lambda_m)^4}$

$$Q \propto \frac{A}{(\lambda_m)^4}$$
or
$$Q \propto \frac{r^2}{(\lambda_m)^4}$$

$$Q_A: Q_B: Q_C = \frac{(2)^2}{(3)^4} : \frac{(4)^2}{(4)^4} : \frac{(6)^2}{(5)^4}$$

$$= \frac{4}{81} : \frac{1}{16} : \frac{36}{625}$$

= 0.05:0.0625:0.0576

ie., Q_B is maximum.

112 (a)

Thermal stress is a measure of the internal distribution of force per unit area within body that is applied to the body, in the form of heat

Thermal stress= $Y\alpha\Delta T$

Where Y is Young's modulus, α the coefficient of linear expansion and ΔT the change in temperature

Both the rods are heated,

$$\begin{array}{ll} \therefore & Y_1\alpha_1\Delta T_1 = Y_2\alpha_2\Delta T_2 \\ \text{Since,} & \Delta T_1 = \Delta T_2 \\ \Rightarrow & \frac{Y_1}{Y_2} = \frac{\alpha_2}{\alpha_1} = \frac{3}{2} \end{array}$$

113 (a)

Suppose temperature difference between A and B is 100°C and $\theta_A > \theta_B$

Heat current will flow from *A* and *B* via path *ACB* and *ADB*. Since all the rods are

identical so
$$(\Delta \theta)_{AC} = (\Delta \theta)_{AD}$$

[Because heat current $H = \frac{\Delta \theta}{R}$; here R = same for all]

$$\Rightarrow \theta_A - \theta_C = \theta_A - \theta_D \Rightarrow \theta_C - \theta_D$$

 $\emph{i.e.}$ temperature difference between \emph{C} and \emph{D} will be zero

114 (c)

According to Wien's law, $\lambda_m T = \text{constant}$ $\lambda_r > \lambda_{\nu} > \lambda_b \Rightarrow T_r < T_{\nu} \text{ or } T_A < T_C < T_B$

115 (c)

In first case

$$\frac{m \times s \times (61^{\circ} - 59^{\circ})}{4} = K \left[\left(\frac{(61^{\circ} - 59^{\circ})}{2} \right) - 30^{\circ} \right]$$

...(i)

In second case

$$\frac{m \times s \times (51^{\circ} - 49)}{t} = K \left[\left(\frac{(51^{\circ} - 49^{\circ})}{2} \right) - 30^{\circ} \right]$$

...(ii)

Dividing Eq.(i) by Eq.(ii), we obtain

$$\frac{t}{4} = \frac{30}{20} = \frac{3}{2}$$
 or $t = 6 \text{ min}$

116 (a)

Red and green colours are complementary to each other. When red glass is heated it emits green

light strongly, hence according to Kirchhoff's law, the emissive power of red glass should be maximum for green light. That's why when this heated red glass is taken in dark room it strongly emits green light and looks greenish

117 (d)

$$\frac{Q}{t} = \frac{KA \; \Delta \theta}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$$

 $\frac{r^2}{r}$ is maximum in option (d), hence it will conduct more heat

118 (a)

Rate of cooling $\frac{\Delta \theta}{t} = \frac{A \varepsilon \sigma (T^4 - T_0^4)}{mc} \Rightarrow \frac{\Delta \theta}{t} \propto A$. Since area of plate is largest so it will cool fastest

As we know
$$\alpha = \frac{\Delta L}{L_0 \Delta \theta} \Rightarrow \Delta \theta = \frac{\Delta L}{\alpha L_0} = \frac{5 \times 10^{-5}}{10 \times 10^{-6} \times 1} = 5^{\circ}C$$

120 (c)

According to Wien's displacement law

121 (c)

Rate of heat loss $E = \sigma eA(T^4 - T_0^4)$

$$5.67 \times 10^{-8} \times 0.4 \times 200 \times 10^{-4} \times [(273 + 527)^4 - (273 + 27)^4]$$

$$5.67 \times 10^{-8} \times 0.4 \times 200 \times 10^{-4} \times (800)^4$$

- $(300)^4 = 182 J/s$

122 (a)

$$Q = \frac{\mathit{KA}(\theta_1 - \theta_2)t}{\mathit{l}}$$
; in both the cases, A, l and $(\theta_1 - \theta_2)t$

 θ_2) are same so Kt = constant

$$\Rightarrow \frac{K_1}{K_2} = \frac{t_2}{t_1} = \frac{30}{20} = \frac{3}{2} = 1.5$$

According to Wien's displacement law

$$\lambda_m = \frac{b}{r}$$

(b=constant)

$$\therefore \qquad \frac{\lambda_1}{\lambda_2} = \frac{T_2}{T_1}$$

$$\Rightarrow \lambda_2 = \frac{\lambda_1 I_1}{T_2}$$

Given, $\lambda_1 = 4800$ Å, $T_1 = 6000$ K, $T_2 =$ 3000 K

$$\lambda_2 = \frac{4800 \times 6000}{3000} = 9600 \text{Å}$$

124 (a)

According to Newton's law of cooling

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

$$\Rightarrow \frac{60-50}{10} = K \left[\frac{60+50}{2} - \theta_0 \right]$$

$$\Rightarrow 1 = K(55-\theta) \qquad \dots(i)$$

In the second case,

$$\Rightarrow \frac{60-50}{10} = K \left[\frac{50+42}{2} - \theta_0 \right]$$

$$\Rightarrow 0.8 = K[46 - \theta] \dots(ii)$$

Dividing Eq. (i) by Eq. (ii), we get

$$\frac{1}{0.8} = \frac{55 - \theta}{46 - \theta}$$
or
$$40 - \theta = 44 - 0.8\theta$$

$$\Rightarrow \theta = 10$$

125 (a)

Energy gained by water (in 1 s)

$$= (1000 \text{ J}-160 \text{ J})=840 \text{ J}$$

Total heat required to raise the temperature of water from 27°C to 77°C is $ms\Delta\theta$. Hence, the required time,

$$t = \frac{ms\Delta\theta}{\text{rate by which energy is gained by water}}$$
$$= \frac{(2)(4.2 \times 10^3)(50)}{840} = 500 \text{ s}$$
$$= 8 \text{ min } 20 \text{ s}.$$

126 (b)

$$W = JQ \Rightarrow \frac{1}{2} \left(\frac{1}{2} mV^2 \right) = J \times mS\Delta\theta \Rightarrow \Delta\theta = \frac{V^2}{4 \, IS}$$

Temperature of interface
$$T = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$$

= $\frac{300 \times 100 + 200 \times 0}{300 + 200} = 60$ °C

129 (c)

'J' is a conversion

130 (d)

If the temperature of a body on Celsius and Fahrenheit scales are recorded as Cand F respectively, then

$$\frac{C-0}{100-0} = \frac{F-32}{212-32}$$
or
$$\frac{C}{5} = \frac{F-32}{9}$$
Here, $C = 95^{\circ}C$

$$\therefore \frac{95}{5} = \frac{F-32}{9}$$
Or
$$5F = 1015$$

$$\therefore F = \frac{1015}{5} = 203^{\circ}F$$

$$\frac{F - 32}{9} = \frac{K - 273}{5} \Rightarrow \frac{F - 32}{9} = \frac{95 - 273}{5} \Rightarrow F$$

$$= -288^{\circ}F$$

 $\therefore \frac{\lambda_{m_2}}{\lambda_m} = \frac{T_1}{T_2} \Rightarrow \lambda_{m_2} = \frac{2000}{2400} \times 4 = 3.33 \ \mu m$

134 (b)

Density of hot air is lesser than the density of cold air so hot air rises up

135 (c)

Mass and volume of the gas will remain same, so density will also remain same

136 (b)

Pressure inside the mines is greater than that of normal pressure. Also we know that boiling point increases with increase in pressure

137 (a)

1 calorie is the heat required to raise the temperature of 1 g of water from 14.5°C to 15.5°C at 760 mm of Hg.

140 (c)

In steady state energy absorbed by middle plate is equal to energy released by middle plate $\sigma A(3T)^4 - \sigma A(T'')^4 = \sigma A(T'')^4 - \sigma A(2T)^4$ $(3T)^4 - (T'')^4 = (T'')^4 - (2T)^4$ $2(T'')^4 - (16 + 81)T^4$

$$T'' = \left(\frac{97}{2}\right)^{1/4} T$$

141 (c)

Variations of density with temperature is given by

$$\rho' = \frac{\rho}{1 + \gamma \Delta \theta}$$

Fraction change is

$$\frac{\rho' - \rho}{\rho} = \left[\frac{1}{1 + 49 \times 10^{-5} \times 30} - 1 \right]$$
$$= 1.5 \times 10^{-2}$$

142 (c)

$$\frac{90 - 60}{5} = K\left(\frac{90 + 60}{2} - 20\right) \Rightarrow 6 - K \times 55$$
$$\Rightarrow K - \frac{6}{55}$$

And,
$$\frac{60-30}{t} = \frac{6}{55} \left(\frac{60+30}{2} - 20 \right) \Rightarrow t = 11$$
 minute

143 (a)

At low temperature short wavelength radiation is emitted. As the temperature rises colour of emitted radiations are in the following order Red → Yellow → Blue → White (at highest temperature)

144 (d)

-200°C to 600°C can be measured by platinum resistance thermometer

145 (d)

A thermopile is a sensitive instrument, used for detection of heat radiation and measurement of their intensity

146 (b)

When the light emitted from the sun's photosphere passes through it's outer part Chromosphere, certain wave lengths are absorbed. In the spectrum of sunlight, a large number of dark lines are seen called Fraunhoffer

148 (b)

Heat required to melt 1 g of ice at 0°C to water at

 $= 1 \times 80$ cal.

Heat required to raise temperature of 1 g of water from 0°C to 100°C = $1 \times 1 \times 100$ cal Total heat required for maximum temperature of $100^{\circ}\text{C} = 80 + 100 = 180 \text{ cal}$ As one gram of steam gives 540 cal of heat when it is converted to water at 100°C, therefore, temperature of the mixture would be 100°C

149 (a)

Thermal resistance

$$= \frac{l}{KA} = \left[\frac{L}{MLT^{-3}K^{-1} \times L^2} \right] = [M^{-1}L^{-2}T^3K]$$

It is given that $\frac{K_1}{K_2} = \frac{1}{3} \Rightarrow K_1 = K$ then $K_2 = 3K$ the

temperature of the junction in contact

$$\theta = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2} = \frac{1 \times 100 + 3 \times 0}{1 + 3} = \frac{100}{4}$$
$$= 25^{\circ}C$$

151 (d)

If temperature of surrounding is considered then net loss of energy of a body by radiation

$$\begin{split} Q &= A\varepsilon\sigma(T^4-T_0^4)t \Rightarrow Q \propto (T^4-T_0^4) \Rightarrow \frac{Q_1}{Q_2} \\ &= \frac{T_1^4-T_0^4}{T_2^4-T_0^4} \end{split}$$

$$= \frac{(273 + 200)^4 - (273 + 27)^4}{(273 + 400)^4 - (273 + 27)^4}$$
$$= \frac{(473)^4 - (300)^4}{(673)^4 - (300)^4}$$

152 (d)

Due to large specific heat of water, it releases large heat with very small temperature change

Rate of cooling $\left(-\frac{dT}{dt}\right) \propto \text{emissivity(e)}$

From the graph,

$$\left(-\frac{dT}{dt}\right)_{x} > \left(-\frac{dT}{dt}\right)_{y}$$

Further emissivity $(e) \propto \text{absorptive power } (a)$ (good absorbers are good emitters also)

$$a_x > a_y$$

154 (a)

$$\frac{Q_1}{Q_2} = \frac{r_1^2 T_1^4}{r_2^2 T_2^4} = \frac{4^2}{1^2} \times \left(\frac{2000}{4000}\right)^4 = 1$$

In convection, the heated lighter particles move upwards and colder heavier particles move downwards to their place. This depends | 166 (c) on weight and hence, on gravity.

156 (a)

The temperature of the body is same that of its surroundings, so the amount of heat absorbed by it should be equal to amount of heat radiated by it.

157 (b)

$$\lambda_m \propto \frac{1}{T} \Rightarrow \lambda_{m_1} T_1 = \lambda_{m_2} T_2$$

 $\Rightarrow T_2 = \frac{\lambda_{m_1} T_1}{\lambda_{m_2}} = \frac{1.4 \times 10^{-6} \times 1000}{2.8 \times 10^{-6}} = 500 K$

158 (a)

$$\frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{273 + 927}{273 + 327}\right)^4 = \left(\frac{1200}{600}\right)^4 = 16$$

$$\Rightarrow Q_2 = 32 \text{ KJ}$$

159 (d)

$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \Rightarrow \frac{mL}{t} = \frac{KA(\theta_1 - \theta_2)}{l}$$

$$\Rightarrow K \propto \frac{1}{t} \quad [\because \text{ remaining quantities are same}]$$

$$\Rightarrow \frac{K_1}{K_2} = \frac{t_2}{t_1} = \frac{40}{20} = \frac{2}{1}$$

Suppose person climbs upto height h, then by using

$$W = JQ \Rightarrow mgh = JQ$$

$$\Rightarrow 60 \times 9.8 \times h = 4.2 \times \left(10^5 \times \frac{28}{100}\right) \Rightarrow h$$
$$= 200 \text{ m}$$

161 (b) $\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow 6000 = \frac{200 \times 0.75 \times \Delta\theta}{1}$ $\Delta \theta = \frac{6000 \times 1}{200 \times 0.75} = 40^{\circ}\text{C}$

163 (b) $c = \frac{Q}{m \cdot \Delta \theta} \rightarrow \frac{J}{ka \times {}^{\circ}C}$

$$P = \left(\frac{Q}{t}\right) \propto T^4 \Rightarrow \frac{W}{P_2} = \left(\frac{T}{T/3}\right)^4 \Rightarrow P_2 = \frac{W}{81}$$

From Wien's displacement law

$$\lambda_m T = \text{constant}$$

 $\Rightarrow \quad \lambda_{m1} T_1 = \lambda_{m2} T_2$

Or
$$\frac{T_1}{T_2} = \frac{\lambda_{m2}}{\lambda_{m1}} \qquad ...(i)$$

Here, $\lambda_{m1} = 510 \text{ nm}$, $\lambda_{m2} = 350 \text{ nm}$

So, on putting these values in Eq. (i)

$$\frac{T_1}{T_2} = \frac{350}{510} \Rightarrow \frac{T_1}{T_2} = \frac{35}{51} = 0.69$$

$$P \times t = mc\Delta\theta$$

$$\Rightarrow t = \frac{mc\Delta\theta}{P} = \frac{4200 \ m\Delta\theta}{P} = \frac{4200 \times m \times \Delta\theta}{VI}$$

$$\left\{ \because C_{water} = 4200^{J} / kg \times {}^{\circ}\text{C} \right\}$$

$$\Rightarrow t = \frac{4200 \times 1 \times (100 - 20)}{220 \times 4}$$

$$= 321 \cos \alpha \in 3 \text{ min}$$

167 (c)

Solids, liquids and gases all expand on being heated, as a result density (= mass/volume) decreases

168 (c)

Heat capacity/volume = $c \times \frac{m}{v} = c \times \rho$ Desired ratio $=\frac{c_1\rho_1}{c_2\rho_1} = \frac{3}{5} \times \frac{5}{6} = 1:2$

169 (b)

Heat current,
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_1)}{l}$$
$$= \frac{100 \times 100 \times 10^{-4} (100 - 0)}{1}$$
$$\Rightarrow \qquad \frac{Q}{t} = 100 \text{J/s} = 6 \times 10^3 \text{ J/min}$$

171 (d)

Heat released to convert x g of steam at 100°C to water at 100° C is $x \times 540$ cals.

If y g of ice is converted from 0°C to water at 100°C it requires heat $y \times 80 + y \times 1 \times 100 =$

$$\therefore x \times 540 = 180y \text{ or } \frac{y}{x} = \frac{540}{180} = \frac{3}{1}$$

$$\frac{\Delta Q}{\Delta t} = \frac{KA\Delta\theta}{\Delta x} \Rightarrow \text{Thermal gradient } \frac{\Delta\theta}{\Delta x}$$
$$= \frac{(\Delta Q/\Delta t)}{KA} = \frac{10}{0.4} = 25^{\circ}\text{C/cm}$$

In M.K.S. system unit of σ is $\frac{J}{m^2 \times s \times K^4}$

$$\Rightarrow 1 \frac{J}{m^2 \times s \times K^4} = \frac{10^7 erg}{10^4 cm^2 \times s \times K^4}$$
$$= 10^3 \frac{erg}{cm^2 \times s \times K^4}$$

174 (b)

From Newton's law of cooling when a hot body is cooled in air, the rate of loss of heat by the body is proportional to the temperature difference between the body and its surroundings.

Given,
$$\theta_1 = 60$$
°C, $\theta_2 = 50$ °C, $\theta = 25$ °C

Rate of loss of heat=K

(Mean temp.-Atmosphere temp.)

Where K is coefficient of thermal conductivity | 182 (b)

$$\frac{\theta_1 - \theta_2}{t} = K \left(\frac{\theta_1 + \theta_2}{2} - \theta \right)$$
$$\frac{60 - 50}{10} = K \left(\frac{60 + 50}{2} - 25 \right)$$
$$K = \frac{1}{20}$$

Also putting the value of K, we have

$$\frac{50 - \theta_3}{10} = \frac{1}{30} \left(\frac{50 + \theta_3}{2} - 25 \right)$$

$$\theta_3 = 42.85^{\circ} C$$

175 (a)

The temperature at which a black body ceases to radiate energy is 0 K.

176 (c)

Thermoelectric thermometer is used for finding rapidly varying temperature

177 (c)

Heat current,
$$H = \frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{d}$$

= $\frac{0.01 \times 0.8(30^\circ - 0^\circ)}{2 \times 10^{-2}} = 12 \text{ Js}^{-1}$

178 (a)

Natural convection arises due to difference of density at two places and is a consequence of gravity

179 (d)

At boiling point, vapour pressure becomes equal to the external pressure

180 (a)

Newton's law of cooling states that the rate of cooling of a body is directly proportional to temperature difference between the body and the surroundings, provided the temperature difference is small, (less than 10°C), and Newton's law of cooling is given by

$$\frac{dT}{dt} \propto (\theta - \theta_0)$$

181 (b)

According to Stefan's law of radiation

$$U \propto T^4$$
 (: U is the energy)
$$\Rightarrow \frac{U_1}{U_2} = \left(\frac{T_1}{T_2}\right)^4$$

$$\frac{U_1}{U_2} = \left(\frac{T}{T/2}\right)^4$$
 (: $T_2 = \frac{T}{2}$)

Or
$$\frac{U_1}{U_2} = \left(\frac{2}{1}\right)^4$$

Or
$$\frac{U_1}{U_2} = \left(\frac{16}{1}\right)$$

Or
$$U_2 = \frac{U_1}{16}$$

 $\Rightarrow U_2 = \frac{U}{16}$ (: $U_1 = U$)

In series,
$$R_{eq} = R_1 + R_2 \Rightarrow \frac{2l}{K_{eq}A} = \frac{l}{K_1A} + \frac{l}{K_2A}$$

$$\Rightarrow \frac{2}{K_{eq}} = \frac{1}{K_1} + \frac{1}{K_2} \Rightarrow K_{eq} = \frac{2K_1K_2}{K_1 + K_2}$$

183 (d)

From Stefan law, the energy radiated by sun is given by. $P = \sigma eAT^4$, assuming e=1 for sun. In 1st case, $P_1 = \sigma e \times 4\pi R^2 \times T^4$ In 2nd case, $P_2 = \sigma e \times 4\pi (2R^2) \times (2T^4)$ $= \sigma e \times 4\pi R^2 \times T^4 \times 64 =$

 $64P_{1}$

The rate at which energy is received by earth is,

$$E = \frac{P}{4\pi R_{SE}^2} \times A_E$$

where A_E = area of earth

 R_{SE} = distance between sun and earth

So, In Ist case,
$$E_1 = \frac{P_1}{4\pi R_{SE}^2} \times A_E$$

$$E_2 = \frac{P_2}{4\pi R_{SE}^2} \times A_E = 64E_1$$

184 (a)

For gases γ is more

185 (d)

Suppose *m gm* ice melted, then heat required for its melting = $mL = m \times 80$ cal

Heat available with steam for being condensed and then brought to 0°C

$$= 1 \times 540 + 1 \times 1 \times (100 - 0) = 640 \ cal$$

$$\Rightarrow 640 = m \times 80 \Rightarrow m = 8 gm$$

Short trick: You can remember that amount of steam (m') at 100°C required to melt m gm ice at 0°C is

$$m'=\frac{m}{8}$$

Here, $m = 8 \times m' = 8 \times 1 = 8 gm$

186 (c)

Rate of energy $\frac{Q}{\epsilon} = P = A\varepsilon\sigma T^4 \Rightarrow P \propto T^4$

$$\Rightarrow \frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{927 + 273}{127 + 273}\right)^4 \Rightarrow P_1 = 405 W$$

$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{d^2}{l} [d = \text{diameter of rod}]$$

$$\Rightarrow \frac{(Q/t)_1}{(Q/t)_2} = \left(\frac{d_1}{d_2}\right)^2 \times \frac{l_2}{l_1} = \left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right) = \frac{1}{8}$$

Heat required is proportional to square of

$$\frac{Q_1}{Q_2} = \frac{r_1^2}{r_2^2} = \frac{(1.5)^2}{(1)^2} = \frac{9}{4}$$

In series both walls have same rate of heat flow.

$$\frac{dQ}{dt} = \frac{K_1 A (T_1 - \theta)}{d_1} = \frac{K_2 A (\theta - T_2)}{d_2}$$

$$\Rightarrow K_1 d_2 (T_1 - \theta) = K_2 d_1 (\theta - T_2)$$

$$\leftarrow d_1 + d_2 \rightarrow$$

$$\Rightarrow \theta = \frac{K_1 d_2 T_1 + K_2 d_1 T_2}{K_1 d_2 + K_2 d_1}$$

193 (c)

Due to evaporation cooling is caused which lowers the temperature of bulb wrapped in wet hanky

194 (c)

$$t = \frac{Ql}{KA(\theta_1 - \theta_2)} = \frac{mLl}{KA(\theta_1 - \theta_2)} = \frac{V\rho Ll}{KA(\theta_1 - \theta_2)}$$
$$= \frac{5 \times A \times 0.92 \times \frac{5+10}{2}}{0.004 \times A \times 10 \times 3600} = 19.1 hours$$

If m gm ice melts then

Heat lost = Heat gain

$$80 \times 1 \times (30 - 0) = m \times 80 \Rightarrow m = 30 \ gm$$

196 (b)

Substances are classified into two categories

- (i) water like substances which expand on solidification.
- (ii) CO2 like (Wax, Ghee etc.) substances which contract on solidification.

Their behaviour regarding solidification is opposite.

Melting point of ice decreases with rise of pressure but that of wax etc increases with increase in pressure. Similarly ice starts forming from top to downwards whereas wax starts its formation from bottom to upwards

197 (d)

According to Stefan's law

$$E \propto T^4$$
 or $E = \sigma T^4$

Where σ is Stefan's constant. It's value is $= 5.67 \times 10^{-8} \,\mathrm{Wm^{-2}K^{-4}}$

Here,
$$T_1 = 27 + 273 = 300 \text{ K}$$

$$T_2 = 927 + 273 = 1200 \text{ K}$$

$$\therefore \frac{E_1}{E_2} = \left(\frac{300}{1200}\right)^4 = 1:256$$

198 (a)

The equivalent electrical circuit, figure in these cases is of Wheatstone bridge. No current would flow through central rod *CD* when the bridge is balanced. The condition for balanced Wheatstone bridge is $\frac{P}{Q} = \frac{R}{S}$ (in terms of resistances)

$$\frac{1/K_1}{1.K_2} = \frac{1/K_3}{1/K_4} \text{ or } \frac{K_2}{K_1} = \frac{K_4}{K_3}$$

$$\operatorname{Or} K_1 K_4 = K_2 K_3$$

199 (a)

Thermal resistivity = $\frac{1}{\text{Thermal conductivity}}$ $=\frac{1}{2}=0.5$

200 (d)

Because steady state has been reached

201 (c)

$$E = \sigma T^4 \Rightarrow 5.6 \times 10^{-8} \times T^4 = 1$$
$$\Rightarrow T = \left[\frac{1}{5.6 \times 10^{-8}}\right]^{1/4} = 65 K$$

202 (b)

Density at 0°C, ρ_0 =1.0127 Density at 100°C, $\rho_{100}=1$

Coefficient of real expansion of liquid

$$\begin{split} \gamma_{real} &= \frac{\rho_0 - \rho_{100}}{\rho_{100} \times \Delta t} \\ &= \frac{\frac{1.0127 - 1}{1 \times 100}}{1 \times 100} = 0.0127 \times 10^{-2} \\ &= 1.27 \times 10^{-4} \end{split}$$

 $\gamma_{\rm real} = \gamma_{\rm app} + \gamma_g$

 $\gamma_{\rm g} =$ coefficient of volume expansion of glass=3 α

$$1.27 \times 10^{-4} = \gamma_{app} + 3\alpha$$

$$1.27 \times 10^{-4} = \gamma_{app} + 3 \times 9 \times 10^{-6}$$

$$\gamma_{app} = 1.27 \times 10^{-4} - 27 \times 10^{-6}$$

$$= 1.27 \times 10^{-4} - 0.27 \times 10^{-4}$$

$$= 1 \times 10^{-4}$$

Mass expelled= $m_1 - m_2$

$$= 300 - \frac{300}{1.01} = \frac{3}{1.01}$$

203 (a) Here, $\Delta T = 20 - 15 = 5^{\circ}\text{C}$ $\alpha = 0.000012^{\circ}\text{C}^{-1} = 12 \times 10^{-6^{\circ}}\text{C}^{-1}$

Time lost per day =
$$\frac{1}{2}\alpha(\Delta T) \times 86400 \text{ s}$$

= $\frac{1}{2} \times 12 \times 10^{-6} \times 5 \times 86400 \text{ s} = 2.590 \text{ s}$

No, in convection the hot liquid at the bottom becomes lighter and hence it rises up. In this way the base of the convection is the difference in weight and upthrust. In the state of weightlessness this difference does not occur, so convection is not possible

205 (a)

Let the temperature of junction be θ .

$$9K_2\frac{(100-\theta)}{3}=K_2\theta$$

$$3\theta = 900 - 9\theta$$

$$12\theta = 900$$

$$\theta = 75^{\circ}C$$

206 (b)

The wavelength corresponding to maximum emission of radiation from the sun is $\lambda_{\max} = 4753 \text{Å}$ (close to the wavelength of violet colour of visible region). Hence if temperature is doubled λ_m is decreased $\left(\lambda_m \propto \frac{1}{T}\right)$, *i. e.*, mostly ultraviolet radiations are emitted

207 (d)

Loss of heat
$$\Delta Q = A\varepsilon\sigma(T^4 - T_0^4)t$$

 \Rightarrow Rate of loss of heat $\frac{\Delta Q}{t} = A\varepsilon\sigma(T^4 - T_0^4)$
 $= 10 \times 10^{-4} \times 1 \times 5.67 \times 10^{-8} \{ (273 + 127)^4 - (273 + 27)^4 \}$
 $= 0.99 W$

208 (a)

Here,
$$A = 1cm^2 = 10^{-4}m^2$$
, $T = 1000K$, $t = 1s$ and $\sigma = 5.67 \times 10^{-8}Wm^{-2}K^{-4}$
According to Stefan-Boltzmann law, energy radiated by a body is
$$E = \sigma A T^4 t = 5.67 \times 10^{-8} \times 10^{-4} \times (1000)^4 \times 1$$

210 (c)

$$Q = A\varepsilon\sigma T^4 \Rightarrow Q \propto A \propto r^2 \qquad [\because T = \text{constant}]$$
$$\Rightarrow \frac{Q_1}{Q_2} = \frac{r_1^2}{r_2^2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

212 (b)

Temperature gradient = $\frac{100-20}{20}$ = 4°C/cm Temperature of centre = $100-4 \times 10 = 60$ °C

213 (a)

$$\frac{dQ}{dt} = \frac{K(\pi r^2)d\theta}{dt} \Rightarrow \frac{\left(\frac{dQ}{dt}\right)_s}{\left(\frac{dQ}{dt}\right)_l} = \frac{K_s \times r_s^2 \times l_1}{K_l \times r_1^2 \times l_s}$$
$$= \frac{1}{2} \times \frac{1}{4} \times \frac{2}{1}$$
$$\Rightarrow \left(\frac{dQ}{dt}\right) = \frac{\left(\frac{dQ}{dt}\right)_l}{4} = \frac{4}{4} = 1$$

214 (c)

Let θ be temperature of middle point C and in series rate of heat flow is same $\Rightarrow K(2A)(100 - \theta) = KA(\theta - 70)$ $\Rightarrow 200 - 2\theta = \theta - 70 \Rightarrow 3\theta = 270 \Rightarrow \theta = 90^{\circ}\text{C}$

215 (c)

Good absorbers are always good emitters of heat

216 (b)

According to Stefan's law radiant energy emitted by a perfectly black body per unit area per sec (*ie*, emissive power of black

body) is directly proportional to the fourth power of its absolute temperature ie $E \propto T^4$

$$\Rightarrow \frac{E_1}{E_2} = \frac{T_1^4}{T_2^4}$$

$$\frac{5}{E_2} = \frac{(273 + 227)^4}{(273 + 727)^4}$$

$$E_2 = 5 \times \left[\frac{1000}{500}\right]^4$$

$$= 5 \times 16 = 80 \text{ cal cm}^{-2} s^{-1}$$

217 (a)

According to Wien's displacement law $\lambda_m \propto \frac{1}{T}$. Hence, it temperature increases λ_m decreases i.e., peak of the $E-\lambda$ curve shift towards left

218 (c)

According to Wien's law,

$$\lambda \propto \frac{1}{T}$$

ie., it depends on the temperature of the surface.

219 (a)

The black spot on heating absorbs radiations and so emits them in the dark room while the polished shining part reflects radiation and absorbs nothing and so does not emit radiations and becomes invisible in the dark

221 (a)

Work done
$$W = JQ$$

=4.2(0.5 × 10 + 1 × 80 + 1 × 100 + 1 ×
540)

 $=3045 \, J$

222 (c)

Modulus of elasticity =
$$\frac{\text{Force}}{\text{Area}} \times \frac{l}{\Delta l}$$

 $3 \times 10^{11} = \frac{33000}{10^{-3}} \times \frac{l}{\Delta l}$
 $\frac{\Delta l}{l} = \frac{33000}{10^{-3}} \times \frac{1}{3 \times 10^{11}}$
 $= 11 \times 10^{-5}$

Change in length, $\frac{\Delta l}{l} = \alpha \Delta T$

$$11 \times 10^{-5} = 1.1 \times 10^{-5} \times \Delta T$$

 \Rightarrow

$$\Delta T = 10$$
K or 10 °C

223 (a)

We know that,
$$\frac{c}{100} = \frac{F-32}{180}$$
 or $F = \frac{9}{5}C + 32$

Equation of straight line is, y = mx + c

Hence, m = (9/5), positive and c = 32 positive. The graph is shown in figure

225 (b)

$$mc \ (\Delta T) = \frac{\frac{1}{2}(\frac{1}{2}m \ v^2)}{J}$$

$$\Delta T = \frac{v^2}{4Jc} = \frac{480 \times 480}{4 \times 4.2 \times (0.03 \times 10^3)} = 457^{\circ}C$$

226 (c)

At absolute zero $(i.e., 0 K)v_{rms}$ becomes zero

227 (a)

$$\Delta\theta = 0.0023h = 0.0023 \times 100 = 0.23$$
°C

228 (d)

The thermal radiation from a hot body travels with a velocity of light in vacuum $i.e.3 \times 10^8 m \, s^{-1}$

229 (c)

Heat transferred in one minute is utilised in melting the ice so, $\frac{KA(\theta_1-\theta_2)t}{l}=m\times L$

$$\Rightarrow m = \frac{10^{-3} \times 92 \times (100 - 0) \times 60}{1 \times 8 \times 10^4}$$
$$= 6.9 \times 10^{-3} kg$$

230 **(b)**

Triple point of water is 273.16 K

231 (b)

According to Wien's law

$$T \propto \frac{1}{\lambda}$$

Red colour has maximum wavelength, so its temperature will be minimum and hence, it will cool at the earliest

232 (d)

Let the temperature of common interface be $T^{\circ}C$. Rate of heat flow

$$H = \frac{Q}{t} = \frac{KA\Delta T}{l}$$

$$\therefore H_1 = \left(\frac{Q}{t}\right)_1 = \frac{2KA(T - T_1)}{4x}$$

And

$$H_2 = \left(\frac{Q}{t}\right)_2 = \frac{KA(T_2 - T)}{x}$$

In steady state, the rate of heat flow should be same in whole system *ie*,

$$H_1 = H_2$$

$$\Rightarrow \frac{2KA(T-T_1)}{4x} = \frac{KA(T_2-T)}{x}$$

$$\Rightarrow \frac{T-T_1}{2} = T_2 - T$$

$$\Rightarrow T - T_1 = 2T_2 - 2T$$

$$\Rightarrow T = \frac{2T_2+T_1}{3}$$

1)

Hence, heat flow from composite slab is

$$H = \frac{KA(T_2 - T)}{x}$$

= $\frac{KA}{x} \left(T_2 - \frac{2T_2 + T_1}{3} \right) = \frac{KA}{3x} \left(T_2 - T_1 \right)$

...(ii)

[from Eq.

(i)]

Accordingly,
$$H = \left[\frac{A(T_2 - T_1)K}{x}\right] f$$
 ... (iii)

By comparing Eqs. (ii) and (iii), we get $\Rightarrow f = \frac{1}{2}$

233 (b)

According to Wien's displacement law $\lambda_m T = \text{constant}$

$$\therefore \frac{(\lambda_m)_1}{(\lambda_m)_2} = \frac{T_2}{T_1}$$

Here $\frac{T_1}{T_2} = \frac{3}{2}$, $(\lambda_m)_1 = 4000\text{Å} = 4000 \times 10^{-10} \text{m}$

$$(\lambda_m)_2 = \frac{4000 \times 10^{-10} \times 3}{2} = 6000 \text{Å}$$

234 (a)

When the relative humidity is low (approx. 25%), the evaporation from our body is faster. Thus we feel colder

235 **(b)**

The metal *X* has a higher coefficient of expansion compared to that for metal *Y*so, on placing bimetallic strip in a cold bath, *X* will shrink more than *Y*. Hence, the strip will bend towards the left.

236 (c)

$$\frac{X - L}{U - L} = \frac{C}{100} \Rightarrow \frac{62 - (-10)}{110 - (-10)} = \frac{C}{100} \quad (C = 60^{\circ}\text{C})$$

237 (a)

Ordinary glass prism (crown, flint) absorbs the infrared radiation but rock salt prism transmit them. Hence it is used to obtain the spectrum of infrared radiation

239 (d)

$$Q \propto T^4 \Rightarrow \frac{H_A}{H_B} = \left(\frac{273 + 727}{273 + 327}\right)^4 = \left(\frac{10}{6}\right)^4 = \left(\frac{5}{3}\right)^4$$
$$= \frac{625}{81}$$

240 (a)

Suppose, height of liquid in each arm before rising the temperature is $\it l.$

With temperature rise height of liquid in each arm increases $i.e.\ l_1>l$ and $l_2>l$

Also
$$l = \frac{l_1}{1+\gamma t_1} = \frac{l_2}{1+\gamma t_2}$$

$$\Rightarrow l_1 + \gamma l_1 t_2 = l_2 + \gamma l_2 t_1 \Rightarrow \gamma = \frac{l_1 - l_2}{l_2 t_1 - l_1 t_2}$$

241 (c)

Since specific heat of lead is given in *Joules*, hence use W = Q instead of W = JQ.

$$\Rightarrow \frac{1}{2} \times \left(\frac{1}{2}mv^2\right) = m. c. \Delta\theta \Rightarrow \Delta\theta = \frac{v^2}{4c} = \frac{(300)^2}{4 \times 150}$$
$$= 150^{\circ}\text{C}$$

242 (a)

Anomalous density of water is given by (a). It has maximum density at 4°C.

243 (d)

Area under given curve represents emissive power and emissive power $\propto T^4 \Rightarrow A \propto T^4$

$$\Rightarrow \frac{A_2}{A_1} = \frac{T_2^4}{T_1^4} = \frac{(273 + 327)^4}{(273 + 27)^4} = \left(\frac{600}{300}\right)^4 = \frac{16}{1}$$

244 (b)

When length of the liquid column remains constant, then the level of liquid moves down with respect to the container, thus γ must be less than 3α

Now we can write $V = V_0(1 + \gamma \Delta T)$

Since
$$V = Al_0 = [A_0(1 + 2\alpha\Delta T)]l_0 = V_0(1 + 2\alpha\Delta T)$$

Hence
$$V_0(1 + \gamma \Delta T) = V_0(1 + 2\alpha \Delta T) \Rightarrow \gamma = 2\alpha$$

245 (b)

Highly polished mirror like surfaces are good reflectors, but not good radiators

246 (c)

At steady state, rate of heat flow for both blocks will be same,

$$\begin{split} i.e., & \frac{K_1A(\theta_1-\theta)}{l_1} = \frac{K_2A(\theta-\theta_2)}{l_2} \left[\text{Given } l_1 - l_2 \right] \\ \Rightarrow & K_1A(\theta_1-\theta) = K_2A(\theta-\theta_2) \Rightarrow \theta \\ & = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2} \end{split}$$

247 (d)

Let the temperature of function be θ , then

$$\begin{array}{ll} H = H_1 + H_2 \\ \Rightarrow & \frac{KA(\theta - 0)}{L} = \frac{KA(90 - \theta)}{L} + \frac{KA(90 - \theta)}{L} \end{array}$$

Or
$$\theta = 90 - \theta + 90 - \theta$$

Or
$$\theta = 180 - 2\theta$$

Or
$$3\theta = 180$$

Or
$$\theta = 60^{\circ}$$
C

248 (d)

Amount of energy radiated ∝ (Temperature)4

249 (a)

Convection is not possible in weightlessness. So the liquid will be heated through conduction

250 (a)

Luminosity of a star depends upon the total radiations emitted by the star.

The star emits 17000 times the radiations emitted by the sun.

$$E = \sigma T^4$$

Hence,
$$\frac{E_1}{E} = \left(\frac{T_1}{T}\right)^4$$

So,
$$(17000)^{1/4} = \frac{T_1}{T}$$

(Given, $E_1 =$

17000E)

$$T_1 = 6000 \times 11.4 = 68400 \text{ K}$$

251 (b)

Intensity is directly proportional to energy.

252 (b)

Heat current $\frac{Q}{t} \propto \frac{r^2}{l}$, from the given options, option (b) has higher value of $\frac{r^2}{l}$.

253 (c)

Stress = $Y\alpha\Delta\theta$; hence it is independent of length

254 (a)

Heat required to raise the temperature of 40 g of water from 25°C to 54.3°C, is equivalent to sum of heat required to condense the steam.

.

Heat required to raise the temperature of water is

$$= m_1 c \Delta t_1$$

...(i)

Where *c* is specific heat of water and *m* the mass. Heat required to condense steam

$$= m_2 L + m_2 c \Delta t_2$$

...(ii)

Equating eqs. (i) and (ii), we get

$$m_2L + m_2c\Delta t_2 = m_1c\Delta t_1$$

Given,
$$m_2 = 2 \,\mathrm{g}$$

$$\Delta t_2 = (100 - 54.3)^{\circ} \text{C} = 45.7^{\circ} \text{C}$$

$$m_1 = 40 \text{ g}$$

$$\Delta t_1 = (54.3 - 25)^{\circ} \text{C} = 29.3^{\circ} \text{C}$$

$$c = 1 \text{ calg}^{-1}$$

$$\Rightarrow$$
 2 × L + 2 × 1 × 45.7 = 40 × 1 × 29.3

$$\Rightarrow$$
 2L + 91.4 = 1172

$$\Rightarrow \qquad 2L = 1080.6$$

$$\Rightarrow$$
 $L = 540.3 \text{ calg}^{-1}$

255 (a)

Rate of cooling $\propto (T^4 - T_0^4)$

$$\Rightarrow \frac{H}{H'} = \frac{(T_1^4 - T_0^4)}{(T_2^4 - T_0^4)} = \frac{600^4 - 200^4}{400^4 - 200^4}$$

Or
$$H' = \frac{(16+4)(16-4)H}{(36+4)(36-4)} = \frac{3}{16}H$$

$$\theta_{\text{mix}} = \frac{m_W \theta_W - \frac{m_i L_i}{c_W}}{m_i + m_W} = \frac{100 \times 50 - 10 \times \frac{80}{1}}{10 + 100}$$

$$\Delta L = L_0 \alpha \Delta \theta$$

Rod A:
$$0.075 = 20 \times \alpha_A \times 100 \Rightarrow \alpha_A = \frac{75}{2} \times$$

$$10^{-6}/^{\circ}$$

$$rod B: 0.045 = 20 \times \alpha_B \times 100 \Rightarrow \alpha_B = \frac{45}{2} \times$$

$$10^{-6}/^{\circ}$$

For composite rod : x cm of A and (20 - x)cm of B we have

$$\begin{aligned} 0.060 &= x \; \alpha_A \times 100 + (20 - x)\alpha_B \times 100 \\ &= x \left[\frac{75}{2} \times 10^{-6} \times 100 + (20 - x) \times \frac{45}{2} \times 10^{-6} \right] \end{aligned}$$

On solving we get x = 10 cm

258 (b)

Suppose thickness of each wall is x then

$$\frac{\binom{Q}{t}}{combination} = \left(\frac{Q}{t}\right)_{A} \Rightarrow \frac{K_{S}A(\theta_{1} - \theta_{2})}{2x}$$

$$= \frac{2KA(\theta_{1} - \theta)}{x}$$

$$\because K_{S} = \frac{2 \times 2K \times K}{(2K + K)} = \frac{4}{3}K \text{ and } (\theta_{1} - \theta_{2}) = 36^{\circ}$$

$$\Rightarrow \frac{\frac{4}{3}KA \times 36}{2x} = \frac{2KA(\theta_1 - \theta)}{x}$$

Hence temperature difference across will A is $(\theta_1 - \theta) = 12$ °C

259 (c)

As the coefficient expansion of metal is less as compared to the coefficient of cubical expansion of liquid, we may neglect the expansion of metal ball. So when the ball is immersed in alcohol at 0° C, it displaces some volume V of alcohol at 0° C, and has weight W_1

$$\therefore \ W_1 = W_0 - V \rho_0 g$$

Where $W_0=$ weight of ball in air similarly, $W_2=W_0-V\rho_{59}g$ where $\rho_0=$ density of alcohol at 0°C and $\rho_{59}=$ density of alcohol at 59°C

As $\rho_{59} < \rho_0, \Rightarrow W_2 > W_1 \text{ or } W_1 < W_2$

260 (a)

Water has maximum specific heat

261 (a)

When a piece of glass is heated, due to low thermal conductivity it does not conduct heat fast. Hence unequal expansion of it's layers crack the glass

262 (a)

Latent heat is independent of configuration.
Ordered energy spent in stretching the spring will not contribute to heat which is disordered kinetic energy of molecules of substance

263 (c)

$$\frac{T_1}{T_2} = \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{5.5 \times 10^5}{11 \times 10^5} = \frac{1}{2} \Rightarrow n = \frac{1}{2} \text{ [Given } T_1$$
$$= nT_2\text{]}$$

Ice (0°C) converts into steam (100°C) in following three steps.

Total heat required
$$Q = Q_1 + Q_2 + Q_3$$

= $5 \times 80 + 5 \times 1 \times (100 - 0) + 5 \times 540$
= $3600 \ cal$

266 **(b**)

According to Newton's law $\frac{\theta_1 - \theta_2}{t} = k \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$ Initially.

$$\frac{(80-64)}{5} = K\left(\frac{80+64}{2} - \theta_0\right) \Rightarrow 3.2$$
$$= K(72 - \theta_0) \dots (i)$$

Finally

$$\frac{(64-52)}{10} = K \left[\frac{64+52}{2} - \theta_0 \right] \Rightarrow 1.2$$
$$= K[58 - \theta_0] \dots \text{(ii)}$$

On solving equation (i) and (ii), $\theta_0 = 49$ °C

267 (a)

Let the common temperature is *x* on both scales.

$$\frac{c}{5} = \frac{F - 32}{9}$$

Put C = F = x

$$\therefore \quad \frac{x}{5} = \frac{x - 32}{9}$$

Or
$$9x = 5x - 160$$

Or
$$4x = -160$$

$$\therefore x = -40^{\circ}\text{C}$$

268 (c)

$$\frac{dQ}{dt} = -KA\frac{d\theta}{dx}$$

 $\frac{dQ}{dt}$, K and A are constants for all points

 $\Rightarrow d\theta \propto -dx$; *i. e.*, temperature will decrease linearly with x

269 (a)

The contraction in the length of the wire due to change in

temperature=
$$\alpha LT = 1.2 \times 10^{-5} \times 3 \times (-170 - 30)$$

$$= -7.2 \times 10^{-3}$$
 m

The expansion in the length of wire due to stretching force

$$= \frac{FL}{AY} = \frac{(10 \times 10) \times 3}{(0.75 \times 10^{-6})(2 \times 10^{11})}$$
$$= 2 \times 10^{-3} \text{ m}$$

Resultant change in length

$$= -7.2 \times 10^{-3} + 2 \times 10^{-3}$$
$$= -5.2 \times 10^{-3} \text{m} = -5.2 \text{mm}$$

Negative sign shows a contradiction.

271 (a)

$$K \propto l^2 \Rightarrow \frac{K_1}{K_2} = \frac{l_1^2}{l_2^2} = \left(\frac{10}{25}\right)^2 = \frac{1}{6.25}$$

272 (a)

$$Ice \underbrace{A \leftarrow Q_A \quad \longrightarrow Q_B}_{0^{\circ}C \leftarrow \lambda .x \longrightarrow (10 - \lambda)x \longrightarrow 100^{\circ}C}$$
 Water

Hear received by end A, for melting of ice

$$Q_A = \frac{KA(400-0)t}{\lambda \cdot x} = m L_{ice} \qquad ...(i)$$

Heat received by end B, for vaporization of water

$$Q_B = \frac{K A(400-100)t}{(10-\lambda)x} = m L_{vap}$$
 ...(i)

Dividing both equation, $\frac{\frac{400}{\lambda \cdot x}}{\frac{300}{(10-\lambda)x}} = \frac{L_{ice}}{L_{vap}}$

$$\Rightarrow \frac{4}{3} \frac{(10 - \lambda)}{\lambda} = \frac{80}{540} \Rightarrow \lambda = 9$$

Freezing point of water decreases when pressure increases, because water expands on solidification. "Except water" for other liquid freezing point increases with increase in pressure. Since the liquid in question is water. Hence, it expands on freezing

274 (a)

Thermal conductivity is independent of temperatures of the wall, it is a constant for the material, so it will remain unchanged

275 (d)

 $\gamma_{\text{real}} = \gamma_{\text{app}} + \gamma_{\text{vessel}}; \gamma_{\text{vessel}} = 3\alpha$ For vessel $A' \Rightarrow \gamma_{real} = \gamma_1 + 3\alpha$ For vessel $'B' \Rightarrow \gamma_{\text{real}} = \gamma_2 + 3\alpha_B$

Hence, $\gamma_1 + 3\alpha = \gamma_2 + 3\alpha_B \Rightarrow \alpha_B = \frac{\gamma_1 - \gamma_2}{2} + \alpha$

276 (c)

$$\frac{d\theta}{dt} = \frac{\varepsilon A \sigma}{mc} 4\theta_0^3 \Delta \theta$$

For given sphere and cube $\frac{\varepsilon A \sigma}{mc} 4\theta_0^3 \Delta \theta$ is constant so for both rate of fall of temperature $\frac{d\theta}{dt}$ = constant

277 **(b)**

Loss in time per second $\frac{\Delta T}{T} = \frac{1}{2}\alpha\Delta\theta = \frac{1}{2}\alpha(t-0)$ ⇒ loss in time per day

$$\Delta t = \left(\frac{1}{2}\alpha t\right)t = \frac{1}{2}\alpha t \times (24 \times 60 \times 60)$$
$$= \frac{1}{2}\alpha t \times 86400$$

278 (a)

Cu is better conductor than Al and Ag is better conductor than Cu. Hence conductivity in increasing order is Al < Cu < Ag

279 (a)

Temperature of interface $\theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$

$$\left[\because \frac{K_1}{K_2} = \frac{1}{4} \Rightarrow \text{If } K_1 = K \text{ then } K_2 = 4K\right]$$
$$\Rightarrow \theta = \frac{K \times 0 + 4K \times 100}{5K} = 80^{\circ}\text{C}$$

280 (a)

Change in volume, $\Delta V = V \gamma \Delta t$ $0.24 = 100 \times \gamma \times 40$ $\gamma = \frac{0.24}{100 \times 40}$ $= 0.00006 = 6 \times 10^{-5}$

281 (b)

$$\frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{2}{1} = \left(\frac{T_2}{T_1}\right)^4$$

$$\Rightarrow T_2^4 = 2 \times T_1^4 = 2 \times (273 + 727)^4 \Rightarrow T_2$$

$$= 1190K$$

282 (b)

An ideal black body absorbs all the radiations incident upon it and has an emissivity equal to 1. If a black body and an identical another body are kept the same temperature, then the black body will radiate maximum power. Hence, the black object at a temperature of 2000°C will glow brightest.

283 (c)

The boiling point of mercury is 400°C. Therefore, the mercury thermometer can be used to measure the temperature upto 360°C

284 (c)

Total energy radiated from a body

$$Q = A\varepsilon\sigma T^{4}t$$
Or $\frac{Q}{t} \propto AT^{4}$
 $\frac{Q}{t} \propto r^{2}T^{4}$ (: $A = 4\pi r^{2}$)

$$\frac{Q_1}{Q_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{T_1}{T_2}\right)^4 j = \left(\frac{8}{2}\right)^2 \left[\frac{273 + 127}{273 + 527}\right]^4 = 1$$

If thermal resistance of each rod is considered R then, the given combination can be redrawn as follows

(Heat current)_{AC} = (Heat current)_{AB}

$$\frac{(120 - 20)}{2R} = \frac{(120 - \theta)}{R} \Rightarrow \theta = 70^{\circ}\text{C}$$

286 (c)

At boiling point saturation vapour pressure becomes equal to atmospheric pressure. Therefore, at 100°C for water. S. V. P. = 760 mm of Hg (atm pressure)

287 (b)

Thermal capacity = $Mass \times Specific heat$ Due to same material both spheres will have same 294 (d) specific heat. Also mass = Volume $(V) \times$ Density(ρ)

: Ratio of thermal capacity

$$= \frac{m_1}{m_2} = \frac{V_1 \rho}{V_2 \rho} = \frac{\frac{4}{3} \pi r_1^3}{\frac{4}{3} \pi r_2^3} = \left(\frac{r_1}{r_2}\right)^3 = \left(\frac{1}{2}\right)^3 = 1:8$$

288 **(d)**

$$\frac{A_T}{A_{2000}} = \frac{16}{1} \text{ [Given]}$$

Area under $e_{\lambda} - \lambda$ curve represents the emissive power of body and emissive power $\propto T^4$ [Hence area under $e_{\lambda} - \lambda$ curve] $\propto T^4$

$$\Rightarrow \frac{A_T}{A_{2000}} = \left(\frac{T}{2000}\right)^4 \Rightarrow \frac{16}{1} = \left(\frac{T}{2000}\right)^4 \Rightarrow T$$
= 4000K

289 (c)

Initial volume $V_1 = 47.5$ units Temperature of ice cold water $T_1 = 0$ °C = 273 K Final volume of $V_2 = 67$ units

Applying Charle's law, we have $\frac{v_1}{T_1} = \frac{v_2}{T_2}$

(where temperature T_2 is the boiling point)

or
$$T_2 = \frac{V_2}{V_1} \times T_1 = \frac{67 \times 273}{47.5} = 385 \text{ K} = 112^{\circ}\text{C}$$

290 (a)

$$W = JQ \Rightarrow \frac{1}{2} \left(\frac{1}{2} M v^2 \right) = J(m. c. \Delta \theta)$$
$$\Rightarrow \frac{1}{4} \times 1 \times (50)^2 = 4.2[200 \times 0.105 \times \Delta \theta] \Rightarrow \Delta \theta$$
$$= 7.1^{\circ} C$$

291 (a)

According to Stefan's law

$$E \propto T^4$$

$$\frac{E_1}{E_2} = \left[\frac{T_1}{T_2}\right]^4$$

$$\frac{E_1}{0.5} = \left[\frac{273 + 627}{273 + 27}\right]^4$$

$$E_1 = 0.5 \left(\frac{900}{300}\right)^4$$

$$E_1 = 40.5 \text{ J}$$

292 (d)

Rate of cooling (here it is rate of loss of heat) $\frac{dQ}{dt} = (mc + W)\frac{d\theta}{dt} = (m_l c_l + m_c c_c)\frac{d\theta}{dt}$ $\Rightarrow \frac{dQ}{dt} = (0.5 \times 2400 + 0.2 \times 900) \left(\frac{60 - 55}{60}\right)$ $= 115 \frac{J}{2}$

293 (c)

With rise of altitude pressure decreases and boiling point decreases

Let final temperature of water be θ

Heat taken = Heat

given

$$100 \times 1 \times (\theta - 10) + 10(\theta - 10)$$

= $220 \times 1(70 - \theta)$
 $\theta = 48.8^{\circ}C = 50^{\circ}C$

295 (c)

$$E \propto T^4 \Rightarrow \frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4 \Rightarrow \frac{7}{E_2} = \left(\frac{273 + 227}{273 + 727}\right)^4 = \frac{1}{16}$$

 $\Rightarrow E_2 = 112 \frac{cal}{cm^2 \times sec}$

296 (b)

According to Newton's law of cooling t_1 will be less than t_2 .

297 (b)

Liquid having more specific heat has slow rate of cooling because for equal masses rate of cooling $\frac{d\theta}{dt} \propto \frac{1}{c}$

298 (c)

We know that $P = P_0(1 + \gamma t)$ and $V = V_0(1 + \gamma t)$ And $\gamma = (1/273)$ /°C for t = -273°C, we have P =0 and V = 0

Hence, at absolute zero, the volume and pressure of the gas become zero

299 (b)

In series rate of flow of heat is same

$$\Rightarrow \frac{K_A A(\theta_1 - \theta)}{l} = \frac{K_B A(\theta - \theta_2)}{l}$$

$$\Rightarrow 3K_B(\theta_1 - \theta) = K_B(\theta - \theta_2)$$

$$\Rightarrow 3(\theta_1 - \theta) = (\theta - \theta_2)$$

$$\Rightarrow 3\theta_1 - 3\theta = \theta - \theta_2 \Rightarrow 4\theta_1 - 4\theta = \theta_1 - \theta_2$$

$$\Rightarrow 4(\theta_1 - \theta) = (\theta_1 - \theta_2)$$

$$\Rightarrow 4(\theta_1 - \theta) = 20 \Rightarrow (\theta_1 - \theta) = 5^{\circ}C$$

300 (b)

 $\gamma_r = \gamma_a + \gamma_v$; where $\gamma_r =$ coefficient of real expansion,

 γ_a = coefficient of apparent expansion and γ_v = coefficient of expansion of vessel. For copper $\gamma_r = C + 3\alpha_{Cu} = C + 3A$

For silver
$$\gamma_r = S + 3\alpha_{Ag}$$

= $C + 3A = S + 3\alpha_{Ag} \Rightarrow \alpha_{Ag} = \frac{C - S + 3A}{3}$

301 (b)

Thermal conductivity of composite plate

$$K_{eq} = \frac{2K_1K_2}{K_1 + K_2} = \frac{2 \times 2 \times 3}{2 + 3} = \frac{12}{5} = 2.4$$

302 (b)

According to Newton's law of cooling

$$\frac{(\theta_1 - \theta_2)}{t} = K\left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

$$\therefore \frac{(62 - 50)}{10} = K\left(\frac{62 + 50}{2} - \theta_0\right)$$

$$\frac{12}{10} = K(56 - \theta_0) \qquad \dots(i)$$

For further cooling

$$\frac{(50-42)}{10} = K\left(\frac{50+42}{2} - \theta_0\right)$$

$$\frac{8}{10} = K(46 - \theta_0) \qquad \dots(ii)$$

Dividing Eq (i) by Eq. (ii), we get,

$$\frac{12}{8} = \frac{(56 - \theta_0)}{(46 - \theta_0)}$$
$$3(46 - \theta_0) = 2(56 - \theta_0)$$
$$138 - 3\theta_0 = 112 - 2\theta_0$$
$$\theta_0 = 26^{\circ}\text{C}$$

303 (d)

Water has maximum density at 4°C

An opaque body does not transmit any radiation, hence transmission coefficient of an opaque body is zero.

305 (c)

Temperature change in Celsius scale = Temperature change in Kelvin scale = 27 *K*

306 (c)

As coefficient of cubical expansion of liquid equals coefficient of cubical expansion of vessel, the level of liquid will not change on heating

307 (a)

Suppose m' kg ice melts out of m kg. Then by using

 $W = JQ \Rightarrow mgh = J(m'L)$. Hence fraction of ice melts

$$=\frac{m'}{m}=\frac{gh}{IL}=\frac{9.8\times1000}{4.18\times80}=\frac{1}{33}$$

308 (b)

According to Wien's displacement law

$$\lambda_m T = b \text{ or } \lambda_m = \frac{b}{T} = \frac{0.0029}{5 \times 10^4} = 58 \times 10^{-9} m$$

= 58nm

309 (a)

From Stefan's law $E = \sigma T^4$

$$T^4 = \frac{E}{\sigma} = \frac{6.3 \times 10^7}{5.7 \times 10^{-8}} = 1.105 \times 10^{15}$$
$$= 0.1105 \times 10^{16}$$

$$T = 0.58 \times 10^4 K = 5.8 \times 10^3 K$$

310 (d)

$$Q = \sigma e A T^4$$

$$T = \left[\frac{Q}{\sigma(4\pi R^2)}\right]^{1/4}$$

Here e = 1, $A = 4\pi R^2$

311 (b)

Maximum density of water is at 4°C

Also
$$\frac{C}{5} = \frac{F - 32}{9} \Rightarrow \frac{4}{5} = \frac{F - 32}{9} \Rightarrow F = 39.2^{\circ}F$$

312 (c)

Let temperature at the interface is *T*.

For part AB,

For part BC,

$$\frac{Q_2}{t} \propto \frac{(T - T_2)K_2}{l_2}$$

At equilibrium, $\frac{Q_1}{t} = \frac{Q_2}{t}$

313 (d)

Power radiated $P \propto T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4$

$$\Rightarrow \frac{Q}{P_2} = \left(\frac{T}{3T}\right)^4 \Rightarrow P_2 = 81Q$$

314 (d)

Let the quantity of heat supplied per minute be Q. Then quantity of heat supplied in 2 min =mC(90-80)

In 4 min, heat supplied = 2mC(90 - 80)

$$\therefore 2m C(90 - 80) = mL \Rightarrow \frac{L}{C} = 20$$

315 (a)

Here, $\Delta x = 4 \text{ mm} = 4 \times 10^{-3} \text{ m}$

$$\Delta T = 32^{\circ}C$$

Transmit heat per hours

$$\frac{\Delta Q}{\Delta T} = 200 \text{ kcal/h} = \frac{200 \times 1000 \times 4.2}{60 \times 60} J/s$$
$$= 233.33 J/s$$

$$A = 5cm^2 = 5 \times 10^{-4}m^2$$

We know that,
$$\frac{\Delta Q}{\Delta T} = KA\left(\frac{\Delta T}{\Delta x}\right)$$

 \therefore Thermal conductivity of material, $K = \frac{\Delta Q/\Delta T}{A(\Delta T/\Delta x)}$

Or
$$K = \frac{233.33 \times 4 \times 10^{-3}}{5 \times 10^{-4} \times 32} = 58.33 W/m$$
-°C

316 (b)

We can relate an absorbed energy Q and the resulting temperature increase ΔT with relation $Q = cm\Delta T$. In that equation, m is the mass of the material absorbing the energy and c is the specific heat of the material. An absorbed dose of 3 Gy corresponds to an absorbed energy per unit mass of 3 J/kg. Let us assume that c the specific heat of human body, is the same as that of water, 4180 J/kg K. Then we find that

$$\Delta T = \frac{Q/m}{c} = \frac{3}{4180} = 7.2 \times 10^{-4} K = 700 \mu K$$

Obviously the damage done by ionizing radiation has nothing to do with thermal heating. The harmful effects arise because the radiation damages DNA and thus interferes with the normal functioning of tissues in which it is absorbed

317 (c)

The emissive power of a perfectly black body is unity.

319 (b)

 $\frac{dT}{dt} = \frac{\sigma A}{mcI} (T^4 - T_0^4)$ [In the given problem fall in temperature of body dT = (200 - 100) = 100K, temp. of surrounding $T_0 = 0K$, Initial temperature of body T = 200K

$$\frac{100}{dt} = \frac{\sigma 4\pi r^2}{\frac{4}{3}\pi r^3 \rho cJ} (200^4 - 0^4)$$

$$\Rightarrow dt = \frac{r\rho cJ}{48\sigma} \times 10^{-6} s = \frac{r\rho c}{\sigma} \cdot \frac{4.2}{48} \times 10^{-6}$$

$$= \frac{7}{80} \frac{r\rho c}{\sigma} \mu s \approx \frac{7}{72} \frac{r\rho c}{\sigma} \mu s \text{ [As } J = 4.2]$$

$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{K_A}{K_B} = \frac{A_B}{A_A} = \left(\frac{r_B}{r_A}\right)^2 = \frac{1}{4} \Rightarrow K_A = \frac{K_B}{4}$$

Here, $\rho_0 = 10 \text{g/cc}$

$$\rho_{100} = 9.7 \text{g/cc}, \alpha = ?$$

From $\rho_0 = \rho_{100}(1 + \gamma \times 100)$

$$\gamma = \frac{\rho_0 - \rho_{100}}{\rho_{100} \times 100} = \frac{10 - 9.7}{9.7 \times 100} = 3.09 \times 10^{-4}$$

$$\alpha = \frac{\gamma}{3} = \frac{3.09 \times 10^{-4}}{3} = 1.03 \times 10^{-4} \,\text{°C}^{-1}$$

322 (d)

$$\frac{V_1}{V_2} = \frac{1 + \gamma t_1}{1 + \gamma t_2} \Rightarrow \frac{100}{125} = \frac{1 + \gamma \times 20}{1 + \gamma \times 100}$$
$$\Rightarrow \gamma = 0.0033 / ^{\circ}C$$

323 (c)

Production and measurement of temperature close to 0 K is done in cryogenics

324 (c)

When blue glass is heated at high temperature, it absorbs all the radiations of higher wavelength except blue. If it is taken inside a dark room, it emits all the radiation of higher wavelength, hence it looks brighter red as compared to the red piece

326 (c)

For the same heat to be conducted, temperature difference must be same.

Initial temperature difference 10 -

$$(-10) = 20$$
°C = 20K

Outside temperature = $-23^{\circ}C = -23 + 273 =$

Inside temperature =250+20=270K

327 (c)

Star emits thermal radiations these radiations 334 (c) are a mixture of wavelengths and bear the following relation, with temperature (T) as

$$\lambda_m T = \text{constant}$$

Where λ_m is maximum wavelength. This is Wien's displacement law and is used in determining the temperature of stars.

328 (d)

Initially on heating temperature rises from -73°C (200K) to 0°(273K). Then ice melts and temperature does not rise. After the whole ice has melted, temperature begins to rise until it reaches 100°C (373K). Then it becomes constant and after that it changes to

329 (d)

$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{2}{1} = \left(\frac{400 + 273}{T}\right)^4 = \left(\frac{673}{T}\right)^4$$
$$\Rightarrow T = 2^{1/4} \times 673 = 800 \, K$$

330 (a)

Since coefficient of expansion of steel is greater than that of bronze, hence with small increase in it's temperature the hole expands sufficiently

331 (a)

$$R = \frac{l}{KA}$$

$$\frac{T_A - T_B}{R} = \frac{T_B - T_C}{R} = \frac{T_C - T_D}{R}$$

$$60 - T_B = T_B - T_C \dots (i)$$

$$60 - T_B = T_C - 240$$
 ...(ii)

Solving (i) and (ii)

$$T_B = 120$$
 °C

332 (d)

For cooking utensils, low specific heat is preferred for it's material as it should need less heat to raise it's temperature and it should have high conductivity, because, it should transfer heat quickly

333 (a)

Initially at t = 0

Rate of cooling $(R) \propto \text{Fall in temperature of body}$

$$\Rightarrow \frac{R_1}{R_2} = \frac{\theta_1 - \theta_0}{\theta_2 - \theta_0} = \frac{100 - 40}{80 - 40} = \frac{3}{2}$$

Rate of cooling
$$R_C = \frac{A\varepsilon\sigma(T^4 - T_0^4)}{mc} = \frac{A\varepsilon\sigma(T^4 - T_0^4)}{V\rho c}$$

 $\Rightarrow R_C \propto \frac{A}{V} \propto \frac{1}{r} \propto \frac{1}{(\text{Diameter})} \ [\because m = \rho V]$

Since diameter of A is half that of B so it's rate of cooling will be doubled that of B

335 (b)

In parallel combination equivalent conductivity
$$K = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2} = \frac{K_1 + K_2}{2} [\text{As } A_1 = A_2]$$

338 (c)

The latent heat of vaporisation of water is large, so when water is sprinkled over a large area, evaporation takes place, thus, causes cooling.

339 (b)

Because of uneven surfaces of mountains, most of it's parts remain under shadow. So, most of the mountains, land is not heated up by sun rays. Besides this, sun rays fall slanting on the mountains and are spread over a larger area. So, the heat received by the mountains top per unit area is less and they are less heated compared to planes (Foot)

340 (c)

For first slab,

For second slab,

Heat current,
$$H_2 = \frac{K_2(\theta - \theta_2)A}{d_2}$$

As slabs are in series

As slabs are in series
$$H_1 = H_2$$

$$\therefore \frac{K_1(\theta_1 - \theta)A}{d_1} = \frac{K_2(\theta - \theta_2)A}{d_2}$$

$$\Rightarrow \theta = \frac{K_1\theta_1d_2 + K_2\theta_2d_1}{K_2d_1 + K_1d_2}$$
(a)

341 (a)

According to Newton's law of cooling we have, rate of cooling ∝ temperature difference between the liquid and surrounding. As temperature difference decreases gradually, time taken to cool increases ie., $t_1 < t_2 < t_3$

342 (c)

According to Newtons's law of cooling

$$\frac{d\theta}{dt} = \frac{\sigma A (T^4 - T_0^4)}{ms}$$

$$\therefore \qquad \text{Specific heat } s = \frac{\sigma A (T^4 - T_0^4)}{m \left(\frac{d\theta}{dt}\right)}$$

Substituting the values

343 (d)

According to Wien's displacement law,

$$\lambda_m T = b \text{ or } \lambda_m \propto \frac{1}{T}$$

Where *b* is Wien's constant whose value is

$$29 \times 10^{-3} \, \text{mK}$$

$$\frac{(\lambda_{m)_S}}{(\lambda_{m)_F}} = \frac{T_F}{T_S}$$
Or $T_F = T_S \times \frac{(\lambda_{m)_S}}{(\lambda_{m)_F}} = 5500 \text{ K} \times \frac{(5.5 \times 10^{-7} \text{ m})}{(11 \times 10^{-7} \text{ m})}$

$$= 2750 \text{ K}$$

344 (c)

$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow T_2 = \left(\frac{E_2}{E_1}\right)^{1/4} \times T_1$$
$$= (16)^{1/4} \times (273 + 127)$$
$$\Rightarrow T_1 = 200 \text{ K} = 527^{\circ}\text{C}$$

 $\Rightarrow T_2 = 800 K = 527$ °C

345 (c)

 $\lambda_m T = \text{constant}$

From the graph $T_3 > T_2 > T_1$

Temperature of sun will be maximum

346 (b)

As we know, Rate of cooling $\propto \frac{1}{\text{specific heat(c)}}$

 $: c_{oil} < c_{Water}$

⇒ (Rate of cooling)_{oil} > (Rate of cooling)_{Water}

It is clear that, at a particular time after start cooling, temperature of oil will be less than that of water

So graph *B* represents the cooling curve of oil and *A* represents the cooling curve of water

347 (a)

$$\frac{C}{5} = \frac{F - 32}{9} \Rightarrow \frac{t}{5} = \frac{t - 32}{9} \Rightarrow t = -40^{\circ}$$

348 (b)

Since the curved surface of the conductor is thermally insulated, therefore, in steady state, the rate of flow of heat at every section will be the same. Hence the curve between H and x will be straight line parallel to x-axis

349 (b)

$$\lambda_{m_2} = \frac{T_1}{T_2} \times \lambda_{m_1} = \frac{1500}{2500} \times 5000 = 3000\text{Å}$$

350 (a)

From Stefan's law

$$E = \sigma T^4 A$$

Given, $T = 727^{\circ}\text{C} = (727 + 273) = 1000$
K

$$A = 5 \times 10^{-4} \text{ m}^2$$

: Energy =
$$(5.67 \times 10^{-8})(1000)^4(5 \times 10^{-4})60$$

$$E = 1.7 \times 10^3 \,\mathrm{J}$$

352 (b)

Rate of cooling =
$$\frac{-d\theta}{dt} \propto \left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

In second case average temperature will be less hence rate of cooling will be less. Therefore time taken will be more than 4 minutes

353 (a)

$$536 \frac{cal}{gm} = \frac{536 \times 4.2 \, J}{10^{-3} kg} = 2.25 \times 10^6 \, J/kg$$

354 (b)

$$\theta_{mix} = \frac{m_1 c_1 \theta_1 + m_2 c_2 \theta_2}{m_1 c_1 + m_2 c_2}$$

$$= \frac{m s(2t) + 1.5(m s) \times \frac{t}{3}}{m s + 1.5(m s)} = t$$

355 (c)

$$\Delta L = \alpha L(\Delta T) = \frac{F}{A} \frac{L}{Y}$$

$$\therefore F = \alpha(\Delta T)AY$$
= 1.1× 10⁻⁵ × (50 – 30) × 2 × 10⁻⁶ × 2 × 10¹¹
=88 N

356 (c)

Let m gram of water, whose temperature is $\theta(>30^{\circ}\text{C})$, be added to 20 g of water at 30°C. If $m \times 1(\theta - \theta_0) = 20 \times 1(\theta_0 - 30)$ $(m+20)\theta_0 = 60 + m\theta$

$$\theta_0 = \frac{600 + m\theta}{20 + m}$$

For θ_0 to be maximum m should be small and θ should be large

357 (d

According to Newton's law of cooling the rate of loss of heat of a body is directly

proportional to the difference in temperature of the body, ie,

$$-\frac{dQ}{dt} \propto (\Delta \theta)$$

...(i)

Given,
$$-\frac{dQ}{dt} \propto (\Delta \theta)^n$$

...(ii)

Comparing Eqs. (i) and (ii), we get

358 (c)

According to Kirchoff's law, the ratio of emissive power to absorptive power is same for all bodies is equal to the emissive power of a perfectly black

$$\left(\frac{e}{a}\right)_{body} = E_{black \, body}$$
 for a particular wave length $\left(\frac{e_{\lambda}}{a_{\lambda}}\right)_{body} = (E_{\lambda})_{black \, body} \Rightarrow e_{\lambda} = a_{\lambda}E_{\lambda}$

359 (c)

Radiation is the fastest mode of heat transfer

360 (d)

$$(Q)_{Black\ body} = A\sigma T^4 t \Rightarrow Q \propto T^4$$

$$\Rightarrow Q_2 = Q_1 \left(\frac{T_2}{T_1}\right)^4 = 10 \left(\frac{273 + 327}{273 + 27}\right)^4 = 10 \left(\frac{600}{300}\right)^4 \begin{cases} 368 \text{ (b)} \\ \text{For length} \end{cases}$$

361 (c)

As
$$\frac{dQ}{dt} = KA \frac{dT}{dx}$$
, therefore, when

$$dt \to \frac{1}{2}, A \to (2)^2 = 4, K \to \frac{1}{4}$$

 $\frac{dQ}{dt}$ becomes twice; *m* would become twice

Mass of ice melted/s= 2×0.1 g=0.2g

362 (c)

In winter, the temperature of surrounding is low compared to the body temperature (37.4°C). Since woolen clothes are bad conductors of heat, so they keep the body warm

363 (d)

When element and surrounding have same temperature there will be no temperature difference, hence heat will not flow from the filament and it's temperature remains constant

364 (b)

At low temperature short wavelength radiation is emitted. As the temperature rises colour of emitted radiations are in the following order Red → Yellow → Blue → White (at highest temperature)

365 (c)

$$:: \lambda_m T = \lambda_m' T' \Rightarrow \lambda_0 T = \lambda' \times 2T \Rightarrow \lambda' = \frac{\lambda_0}{2}$$

366 (a)

Rapidly changing temperature is measured by thermocouple thermometers

367 (b)

Here, $K_A = 2K_B (dx)_A = d(dx)_B$. If θ is temperature of junction,

$$(dT)_A = \theta_A - \theta$$
, $(dT)_B = (\theta - \theta_B)$

As
$$\left(\frac{dQ}{dt}\right)_A = \left(\frac{dQ}{dt}\right)_B$$

$$\therefore K_A A \frac{(dT)_A}{(dx)_A} = K_B \frac{A(dT)_B}{(dx)_B}$$

$$2K_B(\theta_A - \theta) = K_B(\theta - \theta_B)$$

$$2\theta_A - 2\theta = \theta - \theta_B$$

$$2\theta_A + \theta_B = 3\theta$$

As
$$\theta_A - \theta_B = 48^\circ$$
;(i)

$$\theta_A = 48 + \theta_B$$

Put in Eq. (i)

$$2(48 + \theta_B) + \theta_B = 3\theta$$

$$96+3\theta_B=3\theta$$

$$96 = 3(\theta - \theta_B)$$

$$\theta - \theta_B = 96/3 = 32^{\circ}\text{C}$$

For parallel combination of two rods of equal length and equal area of cross-section.

$$K = \frac{K_1 + K_2}{2} = \frac{K_1 + \frac{4K_1}{3}}{2}$$
$$= \frac{7K_1}{6}$$
Hence, $\frac{K}{K} = \frac{7}{6}$

369 (a)

$$\frac{Q_2}{Q_1} = \frac{T_2^4}{T_1^4} = \left(\frac{273 + 527}{273 + 127}\right)^4 = \left(\frac{800}{400}\right)^4 \Rightarrow Q_2$$
$$= 16 \frac{cal}{cm^2 \times s}$$

370 (a)

According to Wien's displacement law

$$\lambda_m \propto \frac{1}{T} \Rightarrow \lambda_{m_2} < \lambda_{m_1} \ [\because T_1 < T_2]$$

There fore $I - \lambda$ graph for T_2 has lesser wavelength (λ_m) and so curve for T_2 will shift towards left side

372 (b)

$$Q = mL = KA \frac{(\theta_1 - \theta_2)}{l} t \Rightarrow m$$

$$= \frac{1}{L} \times KA \frac{(\theta_1 - \theta_2)}{l} \times t$$

$$= \frac{1}{80} \times 0.2 \times 4 \times \frac{(100 - 0)}{\sqrt{4}} \times 10$$

$$\times 60 \left[\because l^2 = 4 \Rightarrow l = \sqrt{4}\right]$$

$$= \frac{0.2 \times 4 \times 100 \times 600}{80 \times 2} = 300 \ gm$$

374 (a)

Language of question is slightly wrong. As heat capacity and specific heat are two different physical quantities. Unit of heat capacity is Jkg⁻¹, not Jkg⁻¹°C⁻¹. The heat capacity given in the question is really the specific heat. Now applying the heat exchange equation:

$$420 = (m \times 10^{-3})(2100)(5) + (1 \times 10^{-3})(3.36 \times 10^{5})$$

Solving this equation, we get

$$m=8g$$

: The correct answer is 8.

375 (c)

The given arrangement of rods can be redrawn as follows

It is given that
$$H_1 = H_2$$

$$\Rightarrow \frac{KA(\theta_1 - \theta_2)}{2l} = \frac{K_3A(\theta_1 - \theta_2)}{l} \Rightarrow K_3 = \frac{K}{2}$$

$$= \frac{K_1K_2}{K_1 + K_2}$$

376 (b)

Temperature of interface $\theta = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$ Where $K_1 = 2K$ and $K_2 = 3K$ $\left[\because \frac{K_1}{K_2} = \frac{2}{3}\right]$ $\Rightarrow \theta = \frac{2K \times 100 + 3K \times 0}{2K + 3K} = \frac{200K}{5K} = 40^{\circ}\text{C}$

377 (b)

From Wien's law

$$\lambda_m T = \text{constant}$$

Where λ_m is maximum wavelength and T the absolute temperature.

Given,
$$\lambda_1 = 140$$
, $\lambda_2 = 4200\text{Å}$
 $\therefore \frac{\lambda_1}{\lambda_2} = \frac{T_2}{T_1} = \frac{140}{4200}$
 $\Rightarrow \frac{T_2}{T_1} = \frac{1}{30}$
 $\Rightarrow \frac{T_1}{T_2} = \frac{30}{1}$

378 (d)

The degree Celsius (°C) scale was devised by dividing the range of temperature between

the freezing and boiling temperature of pure water at standard atmospheric conditions into 100 equals parts.

For Fahrenheit scale.

Boiling point=212°F,

Freezing point=32°

 \therefore Difference of 100°C = difference of (212° – 32°) = 180°F

$$\therefore \quad \text{Difference of } 30^{\circ} = \frac{180}{100} \times 30 = 54^{\circ}$$

379 (a)

If temperature of surrounding is considered, then net loss of energy of a body by radiation

$$Q = Ae\sigma(T^4 - T_0^4)$$

$$Q \propto (T^4 - T_0^4)$$

$$\therefore \frac{Q_1}{Q_2} = \frac{T_1^4 - T_0^4}{T_2^4 - T_0^4}$$

$$= \frac{(273 + 327)^4 - (273 + 27)^4}{(273 + 427)^4 - (273 + 27)^4}$$

$$= \frac{(600)^4 - (300)^4}{(700)^4 - (300)^4} = 0.52$$

$$\begin{vmatrix} 380 & \textbf{(c)} \\ \frac{F - 32}{9} = \frac{K - 273}{5} \Rightarrow \frac{F - 32}{9} = \frac{0 - 273}{5} \\ \Rightarrow F = -459.4^{\circ}F = -460^{\circ}F \end{vmatrix}$$

381 (a)

 $\frac{C}{5} = \frac{F-32}{9} \Rightarrow C = \left(\frac{5}{9}\right)F - \frac{20}{3}$. Hence graph between °C and °F will be a straight line with positive slope and negative intercept

382 (b)

According to Newton's law of cooling, rate of cooling is given by

$$\left(\frac{-dT}{dt}\right) = \frac{eA\sigma}{mc} (T^4 - T_0^4)$$

where c is specific heat of material.

or
$$\left(\frac{-dT}{dt}\right) \propto \frac{1}{c}$$

ie., rate of cooling varies inversely as specific heat. From the graph, for *A* rate of cooling is larger. Therefore, specific heat of *A* is smaller.

383 (a) $\alpha = \frac{\Delta L}{L_0(\Delta \theta)} = \frac{0.19}{100(100 - 0)} = 1.9 \times 10^{-5} / ^{\circ}C$ Now $\gamma = 3\alpha = 3 \times 1.9 \times 10^{-5} / ^{\circ}C = 5.7 \times 10^{-5} / ^{\circ}C$

384 (b)

 $Y = \frac{FL}{Al}$ where Y is Young's modulus, A is area $\Rightarrow F = \frac{YAl}{L}$... (i)

From the formula for linear expansion

$$\alpha = \frac{l}{L \times 100}$$
 ... (ii)

According to the condition the bar should not bend or expand

Now from equations (i) and (ii)

$$F = YA \times 100\alpha$$

Hence, force is independent of length L

385 **(b)**

Heat taken by ice to raise its temperature to

$$Q_1 = 1 \times 80 + 1 \times 1 \times 100 = 180$$
 cal

Heat given by steam when condensed

$$Q_2 = m_2 L_2 = 1 \times 540 = 540 \text{ cal}$$

As $Q_2 > Q_1$, hence, temperature of mixture will remain 100°C.

386 (d)

Thermostat is used in electric apparatus like refrigerator, iron etc for automatic cut off. Therefore for metallic strips to bend on heating their coefficient if linear expansion should be different

387 (b)

For resistance thermometers

$$t = \frac{R_t - R_0}{R_{100} - R_0} \times 100$$
°C

Here
$$R_t$$
=5.5 Ω , R_o =5 Ω , R_{100} = 5.25 Ω

388 (c)

$$\lambda_m T = \text{constant}$$

389 (a)

$$\lambda_m \propto \frac{1}{T}$$

$$\therefore \quad \frac{\lambda_A}{\lambda_B} = \frac{T_B}{T_A} = \frac{500}{1500} = \frac{1}{3}$$

 $E \propto T^4$ (where $A = \text{surface area} = 4\pi R^2$)

$$E \propto T^4 R^2$$

$$\frac{E_A}{E_B} = \left(\frac{T_A}{T_B}\right)^4 \left(\frac{R_A}{R_B}\right)^2$$
$$= (2)^4 \left(\frac{16}{T_B}\right)^2 = 0$$

 $=(3)^4\left(\frac{16}{19}\right)^2=9$

391 (c)

The volume of the metal at 30°C is

$$V_{30} = \frac{\text{loss of weight}}{\text{Specific gravity } \times g} = \frac{(45 - 25)g}{1.5 \times g}$$
$$= 13.33 \text{ cm}^3$$

Similarly, Volume of metal at 40°C is

$$V_{40} = \frac{(45-27)g}{1.25 \times g} = 14.40cm^3$$

Now,
$$V_{40} = V_{30}[1 + \gamma(t_2 - t_1)]$$

$$\Rightarrow \gamma = \frac{V_{40} - V_{30}}{V_{30}(t_2 - t_1)} = \frac{14.40 - 13.33}{13.33(40 - 30)}$$

$$= 8.03 \times 10^{-3} / ^{\circ}\text{C}$$

: Coefficient of linear expansion of the metal is

$$\alpha = \frac{\gamma}{3} = \frac{8.03 \times 10^{-3}}{3} = 2.6 \times 10^{-3} / ^{\circ}\text{C}$$

393 (a)

Heat is lost by steam in two stages (i) for change of state from steam at 100°C to water at 100°C is $m \times 540$ (ii) to change water at 100°C to water at 80° C is $m \times 1 \times (100 - 80)$, where m is the mass of steam condensed

Total heat lost by is $m \times 540 + m \times 20 =$ $560 \, m(cals)$. Heat gained by calorimeter and its contents is = $(1.1 + 0.02) \times (80 - 15) = 1.12 \times$

Using Principle of calorimetery, Heat gained = heat lost

$$\therefore 560 \ m = 1.12 \times 65, m = 0.130 \ g$$

394 (c)

65 cals

Both the cylinders are in parallel, for the heat flow from one end as shown

Hence
$$K_{eq} = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2}$$

Where A_1 = Area of cross-section of inner cylinder $\propto \pi R^2$ and A_2 = Area of cross-section of cylindrical shell

$$= \pi \{ (2R)^2 - (R)^2 \} = 3\pi R^2$$

$$\Rightarrow K_{eq} = \frac{K_1(\pi R^2) + K_2(3\pi R^2)}{\pi R^2 + 3\pi R^2} = \frac{K_1 + 3K_2}{4}$$

395 (b)

$$\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{727 + 273}{127 + 273}\right)^4 = \frac{(1000)^4}{(400)^4} = \frac{10^4}{4^4}$$
$$= \frac{625}{16}$$

396 (b)

Work done to raise the temperature of 100 gm water through 10°C is

$$W = JQ = 4.2 \times (100 \times 10^{-3} \times 1000 \times 10)$$

= 4200 J

397 (a)

Here,
$$t_1 = 0$$
°C = 273K, $t_2 = 473$ K
 $\gamma_r = 0.18 \times 10^{-3}$ °C $^{-1}$; $d_1 = 13.6$ g/cc

$$d = \frac{a_1}{1 + \gamma_r(\Delta T)}$$

$$= \frac{13.6}{1+0.18\times10^{-3}\times(473-273)}$$

$$d_2 = \frac{13.6}{1.036} = 13.127 \text{g/cc}$$

From
$$T = 2\pi \sqrt{\frac{1}{g}}$$

$$\frac{\Delta T}{T} = \frac{1}{2} \frac{\Delta l}{l} = \frac{\alpha \Delta T}{2}$$

$$= \frac{1}{2} \times 2 \times 10^{-6} \times 10 = 10^{-3}\%$$

399 (b)

Heat lost in $t \sec = mL$ or heat lost per $\sec = \frac{mL}{t}$. This must be the heat supplied for keeping the substance in molten state per sec.

$$\therefore \frac{mL}{t} = P \text{ or } L = \frac{Pt}{m}$$

$$\begin{split} W &= JQ \Rightarrow \frac{1}{2}I\omega^2 = J(MS\Delta\theta) \\ &\Rightarrow \frac{1}{2} \left(\frac{2}{5}MR^2\right)\omega^2 = J(MS\Delta\theta) \Rightarrow \Delta\theta = \frac{1}{5}\frac{R^2\omega^2}{JS} \end{split}$$

401 (b)

Stefan's law states that the rate of emission of 407 (a) radiant energy by unit area of perfectly black body is directly proportional to the fourth power of its absolute temperature.

$$E \propto AT^4$$
 or $E \propto r^2$

(: $A = \pi r^2$ and T is same for both the spheres where r is radius of sphere.)

$$\frac{E_1}{E_2} = \frac{r_1^2}{r_2^2} = \left(\frac{2}{1}\right)^2 = \frac{4}{1} = 4:1$$

402 (d)

$$(OR)^{2} = (PR)^{2} - (PO)^{2} = l^{2} - \left(\frac{l}{2}\right)^{2}$$

$$= [l(1 + \alpha_{2}t)]^{2} - \left[\frac{l}{2}(1 + \alpha_{1}t)\right]^{2}$$

$$l^{2} - \frac{l^{2}}{4} = l^{2}(1 + \alpha_{2}^{2}t^{2} + 2\alpha_{2}t) - \frac{l^{2}}{4}(1 + \alpha_{1}^{2}t^{2} + 2\alpha_{1}t)$$
Neglecting $\alpha_{2}^{2}t^{2}$ and $\alpha_{1}^{2}t^{2}$

$$0 = l^2(2\alpha_2 t) - \frac{l^2}{4}(2\alpha_1 t) \Rightarrow 2\alpha_2 = \frac{2\alpha_1}{4} \Rightarrow \alpha_1$$

403 (b)

A person with dark skin absorbs more heat radiation and feels more heat. It also radiates more heat and feels more cold

404 (b)

We know that heat lost = $mc\theta$

For a given quantity of heat, we must need a minimum mass of water for cooling the radiators due to a high value of specific heat

$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} = \frac{mL}{t} = \frac{K(\pi r^2)\Delta\theta}{l}$$

$$\Rightarrow \text{Rate of melting of ice } \left(\frac{m}{t}\right) \propto \frac{Kr^2}{l}$$

Since for second rod *K* becomes $\frac{1}{4}th r$ becomes double and length becomes half, so

rate of melting will to twice i. e. $\left(\frac{m}{t}\right)_2 = 2\left(\frac{m}{t}\right)_1 =$

 $2 \times 0.1 = 0.2g/s$

Temperature difference between C and D is zero

Since,
$$t = \frac{\rho L}{2k\theta}(x_2^2 - x_1^2)$$

$$\therefore t = \frac{\rho L}{2k\theta}(x^2 - y^2) = \frac{\rho L(x + y)(x - y)}{2K\theta}$$

408 (b)

Suppose m kg if ice melts then by using

$$W = H$$
(Joules) = (Joules)
$$\Rightarrow Mgh = mL \Rightarrow 3.5 \times 10 \times 2000$$

$$= m \times 3.5 \times 10^{5}$$

$$\Rightarrow m = 0.2 \ kg = 200 \ gm$$

409 (b)

$$W = JQ = 4.18 \times 400 = 1672$$
 joule

$$\frac{\theta_1 - \theta_2}{l} = 80 \Rightarrow \frac{30 - \theta_2}{0.5} = 80 \Rightarrow \theta_2 = -10^{\circ}\text{C}$$

411 (a)

According to Stefan's law

$$E \propto T^4$$

$$\frac{E'}{E} = \left(\frac{3T}{T}\right)^4 \text{ or } E' = 81E$$

$$L = L_0(1 + \alpha \Delta \theta) \Rightarrow \frac{L_1}{L_2} = \frac{1 + \alpha(\Delta \theta)_1}{1 + \alpha(\Delta \theta)_2}$$

$$\Rightarrow \frac{10}{L_2} = \frac{1 + 11 \times 10^{-6} \times 20}{1 + 11 \times 10^{-6} \times 19} \Rightarrow L_2 = 9.99989$$

$$\Rightarrow \text{Length is shorten by}$$

$$10 - 9.99989 = 0.00011 = 11 \times 10^{-5} cm$$

When we increase the temperature of a liquid, the liquid will expand. So, the volume of the liquid will increase and hence, the density of the liquid will decrease.

414 (c)

Given,
$$\Delta l_1 = \Delta l_2$$

Or $l_1 \alpha_a t = l_2 \alpha_s t$
 $\therefore \frac{l_1}{l_2} = \frac{\alpha_s}{\alpha_a}$
Or $\frac{l_1}{l_2} = \frac{\alpha_s}{\alpha_s}$

415 (d)

Let θ be the temperature of the mixture. Heat gained by water at 0° C = Heat lost by water at 10° C

$$c m_1 (\theta - 0) = c m_2 (10 - \theta)$$

 $\theta = \frac{400}{60} = 6.66$ °C

416 **(b)**

$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \frac{T_1^4}{T_2^4} \Rightarrow T_2^4 = \left(\frac{E_2}{E_1}\right) T_1^4$$
$$\Rightarrow T_2^4 = \frac{1}{16} \times (1000)^4 = \left(\frac{1000}{2}\right)^4$$
$$\Rightarrow T_2 = 500K$$

417 (d)

$$T_1 = 277^{\circ}\text{C} = 277 + 273 = 550 \text{ K}$$

 $T_2 = 67^{\circ}\text{C} = 67 + 273 = 340 \text{ K}$

Temperature of surrounding

$$T = 27^{\circ}\text{C} = 27 + 273 = 300 \text{ K}$$

Ratio of loss of heat= $\frac{T_1^4-T^4}{T_2^4-T^4}$

$$= \frac{\left(\frac{T_1}{T}\right)^4 - 1}{\left(\frac{T_2}{T}\right)^4 - 1} = \frac{\left(\frac{550}{300}\right)^4 - 1}{\left(\frac{340}{300}\right)^4 - 1} = \frac{9.5}{0.5} = \frac{19}{1}$$

418 (d)

$$W = JQ \Rightarrow W = 4.2 \times 200 = 840 J$$

419 (b)

Heat released by 5 kg of water when its temperature falls from 20°C to 0°C is,

$$Q_1 = m_1 c_1 \, \Delta \theta_1 = (5)(10^3)(20-0) =$$

 10^5 cal

When 2 kg ice at -20° C comes to a temperature of 0° C, it takes an energy

$$Q_2 = m_2 c_2 \, \Delta \theta_2 = (2)(500)(20) =$$

 0.2×10^{5} cal

The remaining heat

$$Q = Q_1 - Q_2 = 0.8 \times 10^5$$
 cal will melt a mass m of the ice, thus

$$m = \frac{Q}{L} = \frac{0.8 \times 10^5}{80 \times 10^3} = 1 \text{ kg}$$

So, the temperature of the mixture will be 0°C, mass of water in it is 5+1=6 kg and mass of ice is 2-1=1 kg

420 (c)

To measure the radial rate of heat flow, we have to go for integration technique as here the area of the surface through which heat will flow is not constant.

Let us consider an element (spherical shell) of thickness dx and radius x as shown in figure. Let us first find the equivalent thermal resistance between inner and outer sphere.

Resistance of shell= $dR = \frac{dx}{K \times 4\pi x^2}$

From
$$R = \frac{l}{KA}$$
 where,
 $K = \text{thermal conductivity}$

$$\Rightarrow \int dR = R = \int_{r_1}^{r_2} \frac{dx}{4\pi K x^2}$$

$$= \frac{1}{4\pi K} \left[\frac{1}{r_1} - \frac{1}{r_2} \right] = \frac{r_2 - r_1}{4\pi K (r_1 r_2)}$$

Rate of heat flow = H

$$= \frac{r_1 - r_2}{R}$$

$$= \frac{r_1 - r_2}{r_2 - r_1} \times 4\pi K(r_1 r_2)$$

$$\propto \frac{r_1 r_2}{r_2 - r_1}$$

421 (c)

Power $P \propto AT^4 \propto r^2T^4$

$$\Rightarrow \frac{P_2}{P_1} = \left(\frac{r_2}{r_1}\right)^2 \times \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{4r}{r}\right)^2 \times \left(\frac{T/2}{T}\right)^4 = 1$$

422 **(a**)

Heat absorbed by 540 g of ice at 0° C to melt out = 540×80 cal. This is exactly what is available in 540 g of water at 80° C to cool down to 0° C

423 (a)

The latent heat of vaporization is always greater than latent heat of fusion because in liquid to vapour phase change there is a large increase in volume. Hence more heat is required as compared to solid to liquid phase change

424 (c)

When pressure increases boiling point also increases

425 (a)

$$Q = m. c. \Delta\theta = 5 \times (1000 \times 4.2) \times (100 - 20)$$

= 1680 \times 10³ J = 1680 kJ

426 (c)

From ideal gas equation $PV=\mu$ $RT\Rightarrow P=\frac{\mu\,RT}{V}$ Given $PT^2=K\Rightarrow\frac{\mu\,RT}{V}$. $T^2=K\Rightarrow\mu$ $RT^3=KV$... (i)

Differentiating both sides, we get $3\mu RT^2 dT = K dV ...$ (ii)

Dividing equation (ii) by (i), we get $\frac{3}{T}dT = \frac{dV}{V}$ Coefficient of volume expansion $= \frac{dV}{V} = \frac{3}{T}$

427 (b)

Water has maximum density at 4°C so at this temperature, it has minimum volume.

428 (c)

Newton's law of cooling is used for the determination of specific heat of liquids

429 (c)

Substances having more specific heat take longer time to get heated to a higher temperature and longer time to get cooled.

If we draw a line parallel to the time axis then it cuts the given graphs at three different points. Corresponding points on the times axis shows that

$$t_C > t_B > t_A \Rightarrow C_C > C_B > C_A$$

430 (d)

Rate of cooling
$$R_C = \frac{d\theta}{dt} = \frac{A\varepsilon\sigma(T^4 - T_0^4)}{mc}$$

 $\Rightarrow \frac{d\theta}{dt} \propto \frac{A}{V} \propto \frac{r^2}{r^3} \Rightarrow \frac{d\theta}{dt} \propto \frac{1}{r}$

431 (d)

$$\lambda_m T = \text{constant} \Rightarrow \frac{T_1}{T_2} = \frac{\lambda_2}{\lambda_1} \Rightarrow \frac{10^{-4}}{0.5 \times 10^{-5}} = 200$$

432 (d)

$$\frac{X - LFP}{UFP - LFP} = \text{constant}$$

Where *X* = Any given temperature on that scale L. F. P. = Lower fixed point (Freezing point)

U. F. P. = Upper fixed point (Boiling point)

$$\begin{split} \frac{W-39}{239-39} &= \frac{39-0}{100-0} \\ \Rightarrow \frac{W-39}{200} &= \frac{39}{100} \Rightarrow W = 78+39 \Rightarrow W = 117^{0}W \end{split}$$

433 (b)

Rate of cooling of a body $R = \frac{\Delta \theta}{t} = \frac{A \epsilon \sigma (T^4 - T_0^4)}{mc}$

$$\Rightarrow R \propto \frac{A}{m} \propto \frac{\text{Area}}{\text{Volume}}$$

 \Rightarrow For the same surface area, $R \propto \frac{1}{\text{Volume}}$

: Volume of cube < Volume of sphere

 \Rightarrow $R_{Cube} > R_{Sphere} i.e.$ cube, cools down with faster rate

435 (b)

$$Q = \frac{KA(\theta_1 - \theta_2)}{l}t \Rightarrow K_1t_1 = K_2t_2 \Rightarrow \frac{K_1}{K_2} = \frac{t_2}{t_1}$$
$$= \frac{35}{20} = \frac{7}{4}$$

[As Q, l, A and $(\theta_1 - \theta_2)$ are same]

436 (c)

Water will overflow, both when heated or cooled because water has maximum density at 4°C or minimum volume at 4°C

437 (c)

Heat absorbed by water = Heat produced $mc \Delta T = \frac{mgh}{I}$

$$\Delta T = \frac{gh}{Ic} = \frac{980 \times 500 \times 100}{4.2 \times 10^7 \times 1} = \frac{900}{420} = 1.16$$
°C

438 (b)

The rate of radiated energy $\frac{Q}{t} = P = A\varepsilon\sigma T^4$ $\Rightarrow 1134 = 5.67 \times 10^{-8} \times (0.1)^2 T^4 \Rightarrow T = 1189 K$

439 (a)

If the room temperature becomes equal to the dew point, the relative humidity of the room is 100%.

440 (d)

Temperature of mixture
$$\theta = \frac{m_1 c_1 \theta_1 + m_2 c_2 \theta_2}{m_1 c_1 + m_2 c_2}$$

$$\Rightarrow 32 = \frac{m_1 \times 0.2 \times 40 + 100 \times 0.5 \times 20}{m_1 \times 0.2 + 100 \times 0.5} \Rightarrow m_1$$

$$= 375 gm$$

441 **(b)**

Since
$$102.2^{\circ}F \rightarrow 39^{\circ}\text{C}$$
 and $98.6^{\circ}F \rightarrow 37^{\circ}\text{C}$
Hence $\Delta Q = m.s.\Delta \theta = 80 \times 1000 \times (39 - 37)$
= $16 \times 10^{4} cal = 160 \ kcal$

442 (b)

$$\frac{4\pi}{3}r^3\rho c\left(-\frac{dT}{dt}\right) = \sigma 4\pi r^2(T^4 - T_0^4)$$

$$\therefore \qquad \left(-\frac{dT}{dt}\right) = \frac{3\sigma}{\rho rc} \left(T^4 - T_0^4\right) = H$$

(say)

Ratio of rates of fall of temperature

$$\frac{H_A}{H_B} = \frac{r_B}{r_A}$$

443 (b)

From Stefan's law, the rate at which energy is radiated by sun at its surface is $P = \sigma \times$ $4\pi r^2 T^4$

[Sun is a perfectly black body as it emits radiations of all wavelengths and so for it e = 1.

The intensity of this power at earth's

surface(under the assumption
$$r>>r_0$$
) is
$$I = \frac{P}{4\pi R^2} = \frac{\sigma \times 4\pi r^2 T^4}{4\pi R^2} = \frac{\sigma R^2 \sigma T^4}{r^2}$$

The area of earth which receives this energy is only one-half of total surface area of earth, whose projection would be πr_0^2 .

: Total radiant power as received by earth

$$= \pi r_0^2 \times I$$

$$= \frac{\pi r_0^2 \times \sigma R^2 T^4}{r^2} = \frac{\pi r_0^2 R^2 \sigma T^4}{r^2}$$

$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} = \frac{0.2 \times 10 \times 20}{2 \times 10^{-3}} = 2 \times 10^4 J/s$$

$$\frac{\left(\frac{Q}{t}\right)_1}{l} = \frac{K_1 A_1 (\theta_1 - \theta_2)}{l} \text{ and } \left(\frac{Q}{t}\right)_2 = \frac{K_2 A_2 (\theta_1 - \theta_2)}{l}$$
Given $\left(\frac{Q}{t}\right)_1 = \left(\frac{Q}{t}\right)_2 \Rightarrow K_1 A_1 = K_2 A_2$

446 (a)

$$\frac{h_1}{h_2} = \frac{\rho_2}{\rho_1} = \frac{(1 + \gamma \theta_1)}{(1 + \gamma \theta_2)} \qquad \left[\because \rho = \frac{\rho_0}{(1 + \gamma \theta)} \right]$$

$$\Rightarrow \frac{50}{60} = \frac{1 + \gamma \times 50}{1 + \gamma \times 100} \Rightarrow \gamma = 0.005/^{\circ}C$$

447 (b)

Rate of heat flow
$$\left(\frac{Q}{t}\right) = \frac{k\pi r^2(\theta_1 - \theta_2)}{L} \propto \frac{r^2}{L}$$

$$\therefore \frac{Q_1}{Q_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{l_2}{l_1}\right) = \left(\frac{1}{2}\right)^2 \times \left(\frac{2}{1}\right) = \frac{1}{2} \Rightarrow Q_2 = 2Q_1$$
448 (a)

According to Wien's law $\lambda_m T = \text{constant}$, on heating up to ordinary temperatures, only long wavelength (red) radiation is emitted. As the temperature rises, shorter wavelengths are also emitted in more and more quantity. Hence the colour of radiation emitted by the hot wire shifts from red to yellow, then to blue and finally to white

449 (d)

Pressure at 0°C, $p_0 = 40$ cm Pressure at 100°C, $p_{100} = 60 \text{ cm}$ Pressure at unknown temperature t, p_t =100 cm of mercury. Then

$$t = 100 \left(\frac{p_t - p_0}{p_{100} - p_0} \right)$$
$$= 100 \left(\frac{100 - 40}{60 - 40} \right) = 300^{\circ} \text{C}$$

450 (d)

$$\alpha = \frac{\beta}{2} = \frac{2 \times 10^{-5}}{2} = 10^{-5} / ^{\circ}\text{C}$$

451 (d)

From Stefan's law, the rate at which energy is radiated by sun at its surface is

$$P = \sigma \times 4\pi r^2 T^4$$

(Sun is a perfectly black body as it emits radiations of all wavelengths and so for it e=1)

The intensity of this power at earth's surface(under the assumption R>> r_0) is

$$I = \frac{P}{4\pi R^2} = \frac{\sigma \times 4\pi r^2 T^4}{4\pi R^2}$$
$$= \frac{\sigma r^2 T^4}{R^2} = \frac{\sigma r^2 (t + 273)^4}{R^2}$$

452 (a)

Density of water is maximum at 4°C and is less on either side of this temperature

453 (a)

$$\frac{K_1}{K_2} = \frac{l_1^2}{l_2^2} : K_2 = \frac{K_1 l_2^2}{l_1^2} \approx \frac{0.92 \times (4.2)^2}{(8.4)^2} = 0.23$$

Mud is bad conductor of heat. So it prevents the flow of heat between surroundings and inside

455 (a)

The temperature at the contact of the surface

$$= \frac{K_1 d_2 \theta_1 + K_2 d_1 \theta_2}{K_1 d_2 + K_2 d_1}$$

$$= \frac{2K_2 d_2 \times 100 + 2d_2 \times K_2 \times 25}{2K_2 d_2 + K_2 2 d_2}$$

$$= \frac{200 + 50}{4} = 62.6^{\circ}\text{C}$$

$$\frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{273 + 27}{273 + 927}\right)^4 = \left(\frac{1}{4}\right)^4 = \frac{1}{256}$$

Here, $\frac{50}{100}$ (KE of rotation) = $c m \theta$

$$\frac{1}{2} \left(\frac{1}{2} I \omega^2 \right) = c m \theta \frac{1}{4} \left(\frac{2}{5} I r^2 \right) (2 \pi n)^2 = c m \theta$$
$$\theta = \frac{2}{5} \frac{\pi^2 n^2 r^2}{c}$$

458 (b)

$$J = \frac{W}{O} = \frac{Joule}{cal}$$

Due to volume expansion of both liquid and vessel, the change in volume of liquid relative to container is given by $\Delta V = V_0 [\gamma_L - \gamma_g] \Delta \theta$

Given
$$V_0 = 1000 \, cc$$
, $\alpha_g = 0.1 \times 10^{-4} / ^{\circ} \text{C}$

$$\therefore \gamma_g = 3\alpha_g = 3\times 0.1\times 10^{-4}/^{\circ}\mathrm{C} = 0.3\times 10^{-4}/^{\circ}\mathrm{C}$$

460 (b)

$$\Delta t = \frac{\Delta Q(\Delta x)}{KA(\Delta T)}$$

When two rods of same length are joined in

$$A \rightarrow 2$$
 and $(\Delta x) \rightarrow \frac{1}{2}$ times

$$\therefore \Delta t \text{ becomes } \frac{1}{4} \text{ times } ie, \frac{1}{4} \times 12s = 3s$$

461 (c)

 $E \propto T^4$ (Stefan's law)

462 (c)

Because Planck's law explains the distribution of energy correctly at low temperature as well as at high temperature

463 (c)

Since in the region *B* temperature is constant therefore at this temperature phase of the material changes from solid to liquid and $(H_2 H_1$) heat will be absorb by the material. This heat is known as the heat of melting of the solid. Similarly in the region CD temperature is constant therefore at this temperature phase of the

material changes from liquid to gas and $(H_4 - H_3)$ heat will be absorbed by the material. This heat as known as the heat of vaporisation of the liquid

464 (c)

Infinite thermal capacity implies that there would be practically no change in temperature whether heat is taken in or given out.

465 (b)

Heat passes quickly from the body into the metal which leads to a cold feeling

$$\frac{dQ}{dt} = \frac{KA\Delta T}{x}$$

$$\frac{1.56 \times 10^5}{3600} = \frac{K \times 2 \times 20}{12 \times 10^{-2}}$$

$$K = \frac{1.56 \times 10^5 \times 12 \times 10^{-2}}{3600 \times 2 \times 10}$$

$$= \frac{1.56}{12} = 0.13$$

467 (a)

$$\left(\frac{\Delta Q}{\Delta t}\right)_{P} = \left(\frac{\Delta Q}{\Delta t}\right)_{Q}$$

$$K_{1}A_{1} \frac{(T_{1} - T_{2})}{l} = K_{2}A_{2} \frac{(T_{1} - T_{2})}{l}$$

$$\text{Or } K_{1}A_{1} = K_{2}A_{2} \text{ or } \frac{A_{1}}{A_{2}} = \frac{K_{2}}{K_{1}}$$

468 (c)

When light incident on pin hole, enters into the box and suffers successive reflection at the inner wall. At each reflection some energy is absorbed. Hence the ray once it enters the box can never come out and pin hole acts like a perfect black

469 (b)

In the given graph CD represents liquid state

470 (b)

For θt plot, rate of cooling $=\frac{d\theta}{dt}$ = slope of the

At
$$P$$
, $\frac{d\theta}{dt} = \tan \phi_2 = k(\theta_2 - \theta_0)$, where $k =$

At
$$Q$$
, $\frac{d\theta}{dt} = \tan \phi_1 = k(\theta_1 - \theta_0) \Rightarrow \frac{\tan \phi_2}{\tan \phi_1} = \frac{\theta_2 - \theta_0}{\theta_1 - \theta_0}$

471 (b)

Here,
$$\gamma_{ag} = 10.30 \times 10^{-4} \, \text{C}^{-1}$$

$$\gamma_{am} = 10.06 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$$

$$\alpha_a = 9 \times 10^{-6} \, \text{°C}^{-1}, \alpha_m = ?$$

Now,
$$\gamma_r = \gamma_{ag} + g_{glass} = \gamma_{am} + g_m$$

$$10.30 \times 10^{-4} + 3 \times 9 \times 10^{-6}$$

=
$$10.06 \times 10^{-4} + g_m$$
 [: g_g
= $3 \times \alpha_g$]

$$\begin{array}{c} \therefore \ \mathbf{g}_m = (10.30 + 0.27 - 10.06)10^{-4} \\ = 0.51 \times 10^{-4} \\ \alpha_m = \frac{1}{3}\mathbf{g}_m = \frac{0.50 \times 10^{-4}}{3} \\ = 0.17 \times 10^{-4} = 17 \times 10^{-6} \, ^{\circ}\mathrm{C}^{-1} \end{array}$$

472 (c)

A bimetallic strip on being heated bends in from of an arc with more expandable metal (A) outside (as shown)

474 (c)

When state is not changing $\Delta Q = mc\Delta\theta$

Energy received per second i. e., power $P \propto (T^4 -$

$$\Rightarrow P \propto T^4 \quad (\because T_0 << T)$$

Also energy received per sec $(P) \propto \frac{1}{d^2}$

(inverse square law)

$$\Rightarrow P \propto \frac{T^4}{d^2} \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 \times \left(\frac{d_2}{d_1}\right)^2$$
$$\Rightarrow \frac{P}{P_2} = \left(\frac{T}{2T}\right)^4 \times \left(\frac{2d}{d}\right)^2 = \frac{1}{4} \Rightarrow P_2 = 4P$$

If mass of the bullet is m gm,

Then total heat required for bullet to just melt

$$Q_1 = m c \Delta \theta + m L$$

= $m \times 0.03(327 - 27) + m \times 6$
= $15 m cal = (15m \times 4.2)I$

Now when bullet is stopped by the obstacle, the loss in its mechanical energy = $\frac{1}{2}(m \times 10^{-3})v^2J$

$$(\operatorname{As} m g = m \times 10^{-3} kg)$$

As 25% of this energy is absorbed by the obstacle, The energy absorbed by the bullet

$$Q_2 = \frac{75}{100} \times \frac{1}{2} m v^2 \times 10^{-3} = \frac{3}{8} \times 10^{-3} J$$

Now the bullet will melt if $Q_2 \ge Q_1$

i.e.,
$$\frac{3}{8}mv^2 \times 10^{-3} \ge 15m \times 4.2 \Rightarrow v_{\min}$$

= $410m/s$

The velocity of heat radiation in vacuum is equal to that of light

478 (c)

Equivalent thermal conductivity of the compound, slab,

$$K_{eq} = \frac{\frac{l_1 + l_2}{l_1 + l_2}}{\frac{l_1 + l_2}{K_1 + K_2}} = \frac{\frac{l + l}{l_1 + l_2}}{\frac{l}{K} + \frac{l}{2K}}$$
$$= \frac{2l}{\frac{3l}{2K}} = \frac{4}{3} K$$

479 (a)

$$\frac{C_P}{C_V} = \gamma \Rightarrow C_P = C_V \cdot \gamma \text{ But } C_P - C_V = R$$

$$\Rightarrow C_P = R + C_V$$

$$\therefore \gamma C_V = C_V + R \Rightarrow C_V (\gamma - 1) = R \Rightarrow C_V = \frac{R}{\gamma - 1}$$

$$\theta = \frac{\Delta L}{L_0 \Delta \alpha} = \frac{(1 - 0.9997)}{0.9997 \times 12 \times 10^{-6}} = 25^{\circ}\text{C}$$

$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$$
[As $(\theta_1 - \theta_2)$ and K are constant]
$$\Rightarrow \frac{\left(\frac{Q}{t}\right)_1}{\left(\frac{Q}{t}\right)_2} = \frac{r_1^2}{r_2^2} \times \frac{l_2}{l_1} = \frac{4}{9} \times \frac{2}{1} = \frac{8}{9}$$

$$\frac{C}{5} = \frac{F - 32}{9} \Rightarrow \frac{C}{5} = \frac{140 - 32}{9} \Rightarrow C = 60^{\circ}\text{C}$$

Pyrometer can measure temperature from 800°C to 6000°C. Hence temperature of sun is measured with pyrometer

485 (c)

The heat radiation emitted by the human body is the infrared radiation. Their wavelength is of the order of 7.9×10^{-7} m to 10^{-3} m which is of course the range of infrared region. Hence, human body emits radiation in infrared region.

$$\overline{v^2} \propto T \left(\because T \propto K.E. = \frac{1}{2} m v^2 \right)$$

Change in length of brass rod

$$\Delta l_B = \alpha_B l_B (T_2 - T_1)$$

= 2.5 × 10⁻⁵ × 500 × (200 – 50)
= 1.875 mm

Similarly change in length of the steel rod

$$\Delta i l_s = \alpha_B l_S (T_2 - T_1)$$

= 1.25 × 10⁻⁵ × 500 × (200 – 50)
= 0.9375 mm

Therefore, change in length of the combined rod

$$= \Delta l_B + \Delta l_S = 1.875 + 0.9375$$

= 2.8175 mm = 2.8 mm

488 (b)

If the ball is heated then it will expand at free surface, so the ball will expand at outer and inner both surfaces. Hence, the volume of cavity which is inside the ball, decreases.

489 (c)

Heat required to convert 10 g of ice at 0°C to water at 0°C

$$Q_1 mL = 10 \times 80$$
 cal

Heat required to raise the temperature of water from 0°C to 20°C

$$Q_1 = cm\theta = 1 \times 10 \times 20 = 200 \text{ cal}$$

Total heat required

$$= Q_1 + Q_2 = 800 + 200 = 1000$$
 cal

For parallel combination of two rods of equal lengths and equal areas of cross-section,

$$K = \frac{K_1 + K_2}{2}$$
$$= \frac{K_1 + \frac{4K_1}{3}}{2}$$
$$= \frac{7K_1}{6K_1} = \frac{7}{6}$$

491 (d)

Rate of loss of heat $\left(\frac{\Delta Q}{t}\right) \propto$ temperature difference

$$\begin{split} \frac{\left(\frac{\Delta Q}{t}\right)_1}{\left(\frac{\Delta Q}{t}\right)_2} &= \frac{\Delta \theta_2}{\Delta \theta_1} \Rightarrow \frac{60}{\left(\frac{\Delta Q}{t}\right)_2} = \frac{80-20}{40-20} \Rightarrow \left(\frac{\Delta Q}{t}\right)_2 \\ &= \frac{20cal}{s} \end{split}$$

492 (c)
$$\frac{F - 32}{9} = \frac{K - 273}{5} \Rightarrow \frac{x - 32}{9} = \frac{x - 273}{5} \Rightarrow x$$
= 574.25

493 (a)

Let m gm of steam get condensed into water (By heat loss). This happens in following two steps.

$$100^{\circ}C$$
Steam
$$(H_1 = m \times 540)$$

$$[H_2 = m \times 1 \times (100 - 90)]$$

$$90^{\circ}C$$
Water

Heat gained by water (20°C) to raise it's temperature upto $90^{\circ} = 22 \times 1 \times (90 - 20)$ Hence, in equilibrium heat lost = Heat gain $\Rightarrow m \times 540 + m \times 1 \times (100 - 90)$ $= 22 \times 1 \times (90 - 20)$

$$\Rightarrow m = 2.8 g$$

The net mass of the water present in the mixture = 22 + 2.8 = 24.8 g

494 (d)

$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^4$$

$$\Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T}{T + T/2}\right)^4 = \frac{16}{81} \Rightarrow Q_2 = \frac{81}{16}Q_1$$
We increase in energy = $\frac{Q_2 - Q_1}{Q_2} \times 100 = 4000$

% increase in energy = $\frac{Q_2 - Q_1}{Q_1} \times 100 = 400\%$

495 (b)

$$\frac{C}{100} = \frac{x - \text{lower fixed point}}{\text{upper fixed point} - \text{lower point}} = \frac{68 - 5}{95 - 5}$$
$$= \frac{63}{90} = \frac{7}{10}$$
$$C = \frac{700}{10} = 70^{\circ}$$

496 (c)

According to Newton's law of cooling Initially, mean temperature difference

$$= \left(\frac{70 + 60}{2} - \theta_0\right) = (65 - \theta_0)$$

Finally, mean temperature difference

$$= \left(\frac{60 + 50}{2} - \theta_0\right) = (55 - \theta_0)$$

In second case mean temperature difference decreases, so rate of fall of temperature decreases, so it takes more time to cool through the same range

497 (b)

Change in resistance $3.70 - 2.71 = 0.99\Omega$ corresponds to interval of temperature 90°C So change in resistance $3.26 - 2.71 = 0.55\Omega$ Corresponds to change in temperature

$$= \frac{90}{0.99} \times 0.55 = 50^{\circ}\text{C}$$

498 (d)

$$K_B = \frac{K_A}{2}$$

$$K_B = 3K_C$$

$$K_C = \frac{K_A}{6}$$

$$\frac{l}{K_S} = \frac{l_1}{K_A} + \frac{l_2}{K_B} + \frac{l_3}{K_C}$$

$$\frac{3l}{K_S} = \frac{l}{K_A} + \frac{l}{\frac{K_A}{2}} + \frac{l}{\frac{K_A}{6}}$$

$$\frac{3l}{K_S} = \frac{9l}{K_A}$$

$$K_S = \frac{K_A}{3}$$

499 (d)

Fall in temperature of copper block when it is placed on the ice block = $\Delta T = 425 - 0 = 425$ °C. Heat lost by copper block when it is placed on the ice block.

$$Q_1 = m_1 s \Delta T$$

= $4 \times 500 \times 425 = 850 \text{kJ}$

Heat gained by ice in melting into m_2 kg of water.

$$Q_2 = m_2 L$$

$$= m_2 \times 336$$

$$= 336m_2 \text{ kJ}$$

According to Calorimetry principle,

Heat lost=Heat gained

ie,
$$850=336m_2$$

 $m_2 = \frac{850}{336} = 2.5 \text{kg}$

501 (a)

Cubical expansion

$$\Delta V = \gamma V \Delta T$$

$$\Delta V = 3\alpha V \Delta T$$

$$= 3 \times 23 \times 10^{-6} \times \left(\frac{4}{3}\pi \times 10^{3}\right) \times 100$$

$$= 28.9cc$$

502 (c)

In the p-T diagram of water, if the three curves AB, CD and EF are extended, they came to meet at a point P, called the triple point.

Therefore, triple point of a substance is a point in the phase diagram representing a particular set of pressure and temperature at which the solid, liquid and vopour phases of the substance can coexist.

For water, the values of pressure and temperature corresponding to triple point *P* are 0.46 cm of mercury and 273.16 K (or 0.01°C) respectively.

504 (c)

For a black body
$$\frac{Q}{t} = P = A\sigma T^4$$

$$\Rightarrow \frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{P_2}{20} = \left(\frac{273 + 727}{273 + 227}\right)^4$$

$$\Rightarrow \frac{P_2}{20} = (2)^4 \Rightarrow P_2 = 320W$$

506 (a)

$$c = \frac{\Delta Q}{m, \Delta T} = \frac{\Delta Q}{m \times 0} = 0$$

507 (c)

Heat energy always flow from higher temperature to lower temperature. Hence, temperature difference w.r.t. length (temperature gradient) is required to flow heat from one part of a solid to other part

508 (d)

In conducting rod given heat transmits so burning temperature does not reach soon. In wooden rod heat doesn't conducts

509 (d)

Let final temperature be θ Now heat taken by ice= $m_1L + m_1c_1\theta_1$

$$= 5 \times 80 + 5 \times 1(\theta -$$

0)

$$=400 + 50$$

...(i)

Heat given by water at 40°C

$$= m_2 C_2 \theta_2 = 20 \times 1 \times$$

$$(40^{\circ} - \theta)$$
 ...(ii)

Heat given=Heat taken

$$800-20 \theta = 400+5 \theta$$

or
$$25 \theta = 400$$
.

or
$$\theta = \frac{400}{25} = 16$$
°C

510 (a)

Heat current
$$H = \frac{KA\Delta\theta}{l}$$

$$\Delta\theta = \frac{Hl}{KA}$$

$$= \frac{30 \times 1 \times 10^{-2}}{0.76 \times 100 \times 10^{-4}} = 39.47$$

$$= 40^{\circ}\text{C(approx.)}$$

511 (a)

For black body, $P = A\varepsilon\sigma T^4$. For same power $A \propto \frac{1}{T^4}$

$$\Rightarrow \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{r_1}{r_2} = \left(\frac{T_2}{T_1}\right)^4$$

512 (a)

When the temperature of an object is equal to that of human body, no heat is transferred from the object to body and vice versa. Therefore block of wood and block of metal feel equally cold and hot if they have same temperature as human body

513 (b)

$$\frac{C}{5} = \frac{F - 32}{9} \Rightarrow \frac{-183}{5} = \frac{F - 32}{9} \Rightarrow F = -297^{\circ}F$$

514 (a)

$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{\Delta\theta}{(l/KA)} = \frac{\Delta\theta}{R} [R = \text{Thermal resistance}]$$

 $\Rightarrow t \propto R \quad [\because Q \text{ and } \Delta\theta \text{ are same}]$

$$\Rightarrow \frac{t_p}{t_S} = \frac{R_P}{R_S} = \frac{R/2}{2R} = \frac{1}{4} \Rightarrow t_P = \frac{t_S}{4} = \frac{4}{4} = 1 \text{min}$$

[Series resistance $R_S = R_1 + R_2$ and parallel resistance $R_P = \frac{R_1 R_1}{R_2 + R_2}$]

515 (a)

Moment of inertia of a rod,

$$I = \frac{1}{12}ML^2$$
 ... (i)

Where *M* is the mass of the rod and *L* is the length of the rod

$$\therefore \Delta I = \frac{1}{12} 2ML\Delta L \ (\because M \text{ is a constant}) \quad ... \ (ii)$$

Divide (ii) by (i), we get

$$\frac{\Delta I}{I} = 2 \frac{\Delta L}{L}$$
 ... (iii)

As $\Delta L = L \alpha \Delta t$

$$\operatorname{Or} \frac{\Delta L}{L} = \alpha \Delta t$$

Substituting the value of $\frac{\Delta L}{L}$ in (iii), we get

$$\frac{\Delta I}{I} = 2\alpha \Delta t$$

516 (c)

Relative humidity at a given temperature (R)

umidity at a given temperature
$$= \frac{\text{Partial pressure of water vapour}}{\text{Vapour pressure of water}}$$

$$= \frac{0.012 \times 10^5}{0.016 \times 10^5} = 0.75 = 75\%$$

517 (d)

Since, the coefficient of linear expansion of brass is greater than that of steel. On cooling, the brass contracts more, so, it get loosened

519 (c)

In convection hot particles move upward (due to low density) and light particle move downward (due to high density)

520 (c)

Energy radiated per unit time

$$E = \sigma A T^4$$

Where $\sigma = \text{Stefan's constant}$

$$\therefore \quad \text{For sun } E_{\text{sun}} = \sigma A_{\text{sun}} T_{\text{sun}}^4$$

According to question

$$E_{\text{star}} = 10000E_{\text{sun}}$$

$$\sigma A_{\text{star}} \times T_{\text{star}}^{4} = 10000 \times \sigma A_{\text{sun}} \times T_{\text{sun}}^{4}$$

$$\pi R_{\text{star}}^{2} T_{\text{star}}^{4} = 10000 \times \pi R_{\text{sun}}^{2} \times T_{\text{sun}}^{4}$$

$$\left(\frac{R_{\text{star}}}{R_{\text{sun}}}\right)^{2} = 10000 \left(\frac{T_{\text{sun}}}{T_{\text{star}}}\right)^{4}$$

$$= 10000 \left(\frac{6000}{2000}\right)^{4}$$

$$\Rightarrow \frac{R_{\text{star}}}{R_{\text{sun}}} = \sqrt{10000 \times (3)^{4}}$$

$$= 100 \times 3^{2} = 900$$

 $R_{\text{star}}: R_{\text{sun}} = 900:1$

521 **(b**)

The change in length Δl is proportional to l and ΔT . Stated mathematically

$$\Delta l = \alpha l \Delta T$$

Where α is called the coefficient of linear thermal expansion for the material.

Given,
$$\alpha = 10 \times 10^{-6} / ^{\circ}\text{C}$$
, $\Delta T = 100 ^{\circ}\text{C}$
 $l = 10 \text{m}$

$$\Delta l = 10 \times 100 \times 10 \times 10^{-6}$$

= 10⁻²m=1 cm

522 (a)

As
$$V = L^3$$

$$\therefore \frac{\Delta V \times 100}{V} = 3 \frac{\Delta L \times 100}{L}$$

$$= 3 \times 0.2\% = 0.6\%$$

523 (c)

Rate of loss of heat $(R) \propto$ temperature difference $\Rightarrow R \propto (\theta - \theta_0) \Rightarrow R = k(\theta - \theta_0) = k\theta - k\theta_0 [k = \text{constant}]$

On comparing it with y = mx + c it is observed that, the graph between R and θ will be straight line with slope = k and intercept $= -k\theta_0$

524 (c)

According to Stefan's law

$$E = \sigma T^4$$

Where σ is Stefan's constant.

Given,
$$T = 2T_s$$

$$E' = \sigma(2T_s)^4 = 16\sigma T_s^4 = 16E_s$$

Hence, total energy radiated by star is sixteen times as that of the sun.

$$\frac{365 - 361}{2} = K \left[\frac{365 + 361}{2} - 293 \right] = 70 K \Rightarrow K$$

$$= \frac{1}{35}$$
Again $\frac{344 - 342}{t} = \frac{1}{35} \left[\frac{344 + 342}{2} - 293 \right] = \frac{10}{7}$

$$\Rightarrow t = \frac{14}{10} \min = \frac{14}{10} \times 60 = 84 \, s$$

526 (a)

The temperature of ice will increases from -10°C to 0°C.

Heat supplied in this process will be

$$Q = ms_i(10)$$

Here, m = mass of ice

 s_i =specific heat of ice

Then ice starts melting. Temperature during melting will remain constant (0°C). Heat supplied in this process will be

$$Q_2 = mL$$
 where, $L =$

latent heat of melting

Now, the temperature of water will increase from 0°C to 100°C . Heat supplied will be $Q_3 = ms_w(100)$

where $s_w =$ specific heat of water.

Finally water at 100°C will be converted into steam at 100°C and during this process temperature again remains constant.

Temperature *versus* heat supplied graph will be as follows

528 (b)

For a black body rate of energy $\frac{Q}{t} = P = A\sigma T^4$

$$\Rightarrow P \propto T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 = \left\{\frac{(273+7)}{(273+287)}\right\}^4 = \frac{1}{16}$$

529 (a)

For the two sheets, shown in figure, rate of heat transfer is same, *ie*,

$$\frac{dQ_1}{dt} = \frac{dQ_2}{dt}$$

$$\therefore \frac{dT_1}{R_1} = \frac{dT_2}{R_2}$$

$$\frac{\theta_1 - \theta}{R_1} = \frac{\theta - \theta_2}{R_2}$$

$$\theta_1 R_2 - \theta R_2 = \theta R_1 - \theta_2 R_1, \quad \theta \frac{\theta_1 R_2 + \theta_2 R_1}{R_1 + R_2}$$

530 (a)

According to Wien's displacement law

$$\lambda_m = \frac{b}{T} \Rightarrow T = \frac{b}{\lambda_m} = \frac{2.93 \times 10^{-3}}{4000 \times 10^{-10}} = 7325 \text{ K}$$

531 (c)

Wien's displacement law

$$\lambda_{max}$$
. $T = b$ where b =Wien's constant

$$\lambda_{max} \propto \frac{1}{T}$$

Thus, λ_{max} is inversely proportional to absolute temperature (T).

532 (d)

The expansion of solids can be well understood by potential energy curve for two adjacent atoms in a crystalline solid as a function of their intermolecular separation (r).

At ordinary temperature: Each molecule of the solid vibrates about it's equilibrium position P_1 between A and B (r_0 is the equilibrium distance of it from some other molecule)

At high temperature: Amplitude of vibration increases ($C \leftrightarrow D$ and $E \leftrightarrow F$). Due to asymmetry of the curve, the equilibrium positions (P_2 and P_3) of molecule is displaced. Hence it's distance from other molecules increses ($r_2 > r_1 > r_0$).

Thus, on raising the temperature, the average equilibrium between the molecules increases and the solid as a whole expands

533 (d)

Zero kelvin = -273°C (absolute temperature). As no matter can attain this temperature, hence temperature can never be negative on Kelvin scale

534 (a)

Let the final temperature of the mixture be t. Heat lost by water

at 80°C =
$$ms\Delta t$$

= $0.1 \times 10^3 \times s_{\text{water}} \times (80^\circ - t)$
 $(\because m =$

$$V \times d = 0.1 \times 10^3 \text{kg}$$

Heat against by water at 60°C

$$= 0.3 \times 10^3 \times s_{\text{water}} \times (t - 1)^3 \times s_{\text$$

60°)

According to principle of Calorimetry,

Heat lost = Heat against

$$0.1 \times 10^3 \times S_{\text{water}} \times (80^\circ - t) = 0.3 \times 10^3 \times 10$$

$$S_{\mathrm{water}} \times (t-60^{\circ})$$

or
$$(80^{\circ} - t) = 3 \times (t - t)$$

60°)

or
$$4t = 260$$
°C

or

$$t = 260^{\circ}$$
C

535 (c)

Rate of loss of heat is directly proportional to the temperature difference between water and the surroundings

$$\frac{C}{5} = \frac{F - 32}{9} \Rightarrow \frac{25}{5} = \frac{F - 32}{9} = F = 77^{\circ}F$$

537 (d)

According to Wien's displacement law,

$$\lambda_m T = \text{constant}$$

or
$$\lambda_m \propto \frac{1}{T}$$

or
$$\frac{(\lambda_m)_1}{(\lambda_m)_2} = \frac{T_2}{T_1}$$

$$\therefore \frac{5000}{(\lambda_m)_2} = \frac{2227 + 273}{1227 + 273}$$

or
$$\frac{5000}{(\lambda_m)_2} = \frac{2500}{1500}$$

$$(\lambda_m)_2 = 3000 \text{ Å}$$

538 (d)

$$A \propto L^2 \Rightarrow \frac{\Delta A}{A} = 2.\frac{\Delta L}{L} \Rightarrow \frac{\Delta A}{A} = 2 \times 2 = 4\%$$

539 (b)

In first case
$$\frac{50-40}{5} = K \left[\frac{50+40}{2} - \theta_0 \right]$$
 ...(i)
In second case $\frac{40-33.33}{5} = K \left[\frac{40+33.33}{2} - \theta_0 \right]$...(ii)

By solving $\theta_0 = 20^{\circ}$ C

540 (d)

$$n = 8 \text{ mole}, \Delta t = 30^{\circ}\text{C}$$

$$\theta = nc_p \Delta t$$

$$\theta = 8 \times \frac{5}{2} \times 8.31 \times 30 = 5000$$

541 (d)

The polished surface reflects all the radiation

542 (a)

The energy emitted by a body, in the form of radiation on account of its temperature, is called thermal radiation. These radiations are heat radiations and travel along straight lines with the speed of light.

543 (a)

$$\gamma_{\text{app.}} = \frac{\text{Mass expelled}}{\text{Mass remained } \times \Delta T}$$
$$= \frac{x/100}{x \times 80} = \frac{1}{8000} = 1.25 \times 10^{-4} / \text{°C}$$

544 (b)

We know that
$$\frac{dQ}{dt} = kA \frac{d\theta}{dx}$$

In steady state flow of heat

$$d\theta = \frac{dQ}{dt} \cdot \frac{1}{kA} dx$$

$$\Rightarrow \qquad \qquad \theta_{\rm H} - \theta = k'x$$

$$\Rightarrow \qquad \theta = \theta_{\rm H} - k' x$$

Equation $\theta = \theta_H - k'x$ represents a straight line.

545 (d)

$$\theta_{\text{mix}} = \frac{m_W \theta_W - \frac{m_i L_i}{S_W}}{m_i + m_W} = \frac{300 \times 25 - \frac{100 \times 80}{1}}{100 + 300}$$
$$= -1.25^{\circ}\text{C}$$

Which is not possible. Hence $\theta_{mix} = 0$ °C

546 (d)

$$E \propto T^4$$

$$\frac{\Delta T_C}{100} = \frac{\Delta T_F}{180} = \frac{212 - 140}{180}$$

$$i.e., \Delta T_C = 100 \times \frac{72}{180} = 40$$
°C

 \therefore Fall in temperature = 40°

548 (b)

When salt crystals dissolve, crystal lattice is destroyed. The process requires a certain amount of energy (latent heat) which is taken from the water.

In vessel (B), a part of intermolecular bonds has already been destroyed in crushing the crystal. Hence less energy is required to dissolve the powder and the water will be at higher temperature

549 (c)

For brass rod A

Volume $V_1 = \pi (2r)^2 \times l$...(i)

For volume expansion

$$\begin{array}{ll} V'_1 = V_1((1+\gamma\Delta t)) \\ \Rightarrow & V'_1 - V_1 \propto V_1 \\ \text{Or} & \Delta V_1 \propto V_1 \quad ... \text{(ii)} \end{array}$$

Similarly, for brass rod B

volume
$$V_2 = \pi(r)^2 \times 2l$$
 ...(iii)
and $\Delta V_2 \propto V_2$...(iv)

Dividing Eq. (i) by Eq. (ii), we get

$$\frac{V_1}{V_2} = \frac{\pi 4r^2 l}{\pi r^2 2l} = \frac{2}{1}$$

$$\frac{\Delta V_1}{\Delta V_2} = \frac{2}{1}$$

550 (a)

Heat current
$$H = \frac{\Delta \theta}{R} \Rightarrow \frac{H_P}{H_S} = \frac{R_S}{R_P}$$

In first case :
$$R_S = R_1 + R_2 = \frac{l}{(3K)A} + \frac{l}{KA} = \frac{4}{3} \frac{l}{KA}$$

In second case:
$$R_P = \frac{R_1 R_2}{R_1 + R_2} = \frac{\frac{1}{(3K)A} \times \frac{l}{KA}}{\left(\frac{l}{(3K)A} + \frac{l}{KA}\right)} = \frac{l}{4KA}$$

$$\therefore \frac{H_P}{H_S} = \frac{\frac{4l}{3KA}}{\frac{l}{4KA}} = \frac{16}{3}$$

551 (b)

Calorimeters are made by conducting materials

As for a black body rate of absorption of heat is more. Hence thermometer A shows faster rise in temperature but finally both will acquire the atmosphere temperature

554 (b)

Wien's displacement law is given by

$$\lambda_m T = \text{constant}$$

(sav b)

Given, b=Wien's constant= 2.93×10^{-3} m -

$$\lambda_m = 2.93 \times 10^{-10} \mathrm{m}$$

Substituting the values, we obtain

$$T = \frac{b}{\lambda_m}$$

$$= \frac{2.93 \times 10^{-3}}{2.93 \times 10^{-10}} = 10^7 \text{ K}$$

555 (b)

 $Q = m.c.\Delta\theta$; if $\Delta\theta = 1$ K then Q = mc = Thermal capacity

556 (c)

A lake cools from the surface to bottom. Above 4°C the cooled water at the surface flows to the bottom because of it's greater density. But when the surface temperature drops below 4°C (here it is 2°C), the water near the surface is less dense than the warmer water below. Hence the downward flow ceases, the water at the bottom remains at 4°C until nearly the entire lake, is frozen

557 (b)

When two gases are mixed together then Heat lost by the Helium gas = Heat gained by the Nitrogen gas

$$\mu_B \times (C_v)_{He} \times \left(\frac{7}{3}T_0 - T_f\right)$$

$$= \mu_A \times (C_v)_{N_2} \times (T_f - T_0)$$
Box A
Box B

1 mole N_2 1 mole HeTemperature = T_0 Temperature = $\frac{7}{3}T_0$

$$\Rightarrow 1 \times \frac{3}{2}R \times \left(\frac{7}{3}T_0 - T_f\right) = 1 \times \frac{5}{2}R \times (T_f - T_0)$$

By solving we get $T_f = \frac{3}{2}T_0$

558 (b)

$$\frac{dQ}{dt} = KA \frac{d\theta}{dt} \Rightarrow \frac{dQ}{dt} \propto \frac{d\theta}{dt}$$
 [Temperature gradient]

THERMAL PROPERTIES OF MATTER

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- Statement 1: A brass tumbler feels much colder than a wooden tray on a chilly day
- Statement 2: The thermal conductivity of brass is less than that of wood

2

- Statement 1: A hollow metallic closed container maintained at a uniform temperature can act as a
 - source of black body radiation
- Statement 2: All metals act as a black body

3

- Statement 1: While measuring the thermal conductivity of liquid experimentally, the upper layer is
 - kept hot and the lower layer is kept cold
- **Statement 2:** This avoids hearting of liquid by convection

4

- **Statement 1:** Radiation is the speediest mode of heat transfer
- **Statement 2:** Radiation can be transmitted in zig-zag motion

5

- Statement 1: The equivalent thermal conductivity of two plates of same thickness in contact (series) is
 - less than the smaller value of thermal conductivity
- **Statement 2:** For two plates of equal thickness in contact (series) the equivalent thermal conductivity is given by
 - $\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2}$

6

	Statement 1:	The absorbance of a perfect black body is unity
	Statement 2:	A perfect black body when heated emits radiations of all possible wavelengths at that temperatures
7		temperatures
	Statement 1:	The temperature at which Centigrade and Fahrenheit thermometers read the same is $-40^{\rm o}$
	Statement 2:	There is no relation between Fahrenheit and Centigrade temperature
8		
	Statement 1:	Animals curl into a ball, when they feel very cold
	Statement 2:	Animals by curling their body reduce the surface area
9		
	Statement 1:	The melting point of ice decreases with increase of pressure
	Statement 2:	Ice contracts on melting
10		
	Statement 1:	A beaker is completely filled with water at 4°C. It will overflow, both when heated or
	Statement 2:	cooled There is expansion of water below and above 4°C.
11		30000000000000000000000000000000000000
	Statement 1:	Blue star is at high temperature than red star
	Statement 2:	Wien's displacement law states that $T \propto (1/\lambda_m)$
12		
	Statement 1:	Specific heat of a body is always greater than its thermal capacity
	Statement 2:	Thermal capacity is the required for raising temperature of unit mass of the body through unit degree
13		unit degree
	Statement 1:	Water kept in an open vessel will quickly evaporate on the surface of the moon
	Statement 2:	The temperature at the surface of the moon is much higher than boiling point of the
14		water
X.1	Statement 1.	Like light radiations, thermal radiation are also electromagnetic radiation
	Statement 2:	The thermal radiations require no medium for propagation
15		
	Statement 1:	All black coloured objects are considered black bodies
	Statement 2:	Black colour is a good absorber of heat

16 **Statement 1:** The molecules at 0°C ice and 0°C water will have same potential energy Statement 2: Potential energy depends only on temperature of the system 17 Statement 1: Specific heat capacity is the cause of formation of land and sea breeze Statement 2: The specific heat of water is more than land 18 **Statement 1:** Temperatures near the sea coast are moderate **Statement 2:** Water has a high thermal conductivity 19 Statement 1: For higher temperature, the peak emission wavelength of a black body shifts to lower wavelength Statement 2: Peak emission wavelength of a blackbody is proportional to the fourth power of temperature 20 Statement 1: Bodies radiate heat at all temperatures **Statement 2:** Rate of radiation of heat is proportional to the fourth power of absolute temperature 21 Statement 1: Two bodies at different temperatures, if brought in thermal contact do not necessary settle to the mean temperature **Statement 2:** The two bodies may have different thermal capacities 22 **Statement 1:** Woolen clothes keep the body warm in winter **Statement 2:** Air is a bad conductor of heat 23 **Statement 1:** It is hotter over the top of a fire than at the same distance on the sides Statement 2: Air surrounding the fire conducts more heat upwards 24 **Statement 1:** Perspiration from human body helps in cooling the body Statement 2: A thin layer of water on the skin enhances its emissivity 25 Statement 1: The radiation from the sun's surface varies as the fourth power of its absolute temperature

Statement 2: The sun is not a black body 26 Statement 1: Snow is better insulator than ice **Statement 2:** Snow contains air packet and air is good insulator of heat 27 **Statement 1:** Fahrenheit is the smallest unit measuring temperature Statement 2: Fahrenheit was the first temperature scale used for measuring temperature 28 **Statement 1:** If the temperature of a star is doubled then the rate of loss of heat from it becomes 16 Statement 2: Specific heat varies with temperature 29 Statement 1: Melting of solid causes no change in internal energy Statement 2: Latent heat is the heat required to melt a unit mass of solid 30 **Statement 1:** A man would feel iron or wooden balls equally hot at 98.4°F

Statement 2: At 98.4° *F* both iron and wood have same thermal conductivity

THERMAL PROPERTIES OF MATTER

: ANSWER KEY:

1)	С	2)	С	3)	a	4)	c	21)	a	22)	a	23)	С	24)	С
						8)									b
						12)						5		100	
						16)				:20					
17)				19)		20)		1							

THERMAL PROPERTIES OF MATTER

The thermal conductivity of brass is high i.e., brass is a good conductor of heat. So, when a brass tumbler is touched, heat quickly flows from human body to tumbler. Consequently, the number appears colder, on the other hand wood is a bad conductor. So, heat does not flow from the human body to the wooden tray in this case. Thus 8 it appears comparatively hotter

2

Hollow metallic closed container maintained at a uniform temperature can act as source of black body. It is also well-known that all metals cannot act as black body because if we take a highly metallic polished surface. It will not behave as a perfect black body

3 (a)

> We know that to measure thermal conductivity of liquids experimentally, they must be heated from the top i.e., upper layer is kept hot and lower layer is kept cold, so as to prevent convection in liquids

Actually, the process of radiation does not require $\begin{vmatrix} 10 \end{vmatrix}$ any material for transmission of heat Thermal radiation travels with the velocity of light and hence the fastest mode of the transfer. Thermal radiation is always transmitted in a straight line

5

Equivalent thermal conductivity of two equally thick plates in series combination is given by

$$\frac{2}{K} = \frac{1}{K_1} + \frac{1}{K_2}$$
If $K_1 > K_2$
Then $K_1 < K < K_2$

Hence assertion and reason both are false

(b)

Both assertion and reason are true but reason is not correctly explaining the assertion

The relation between F and C scale is, $\frac{C}{5} = \frac{F-32}{9}$. If $F = C \Rightarrow C = -40$ °C, *i. e.*, at -40° the Centigrade and Fahrenheit thermometers reads the same

When the animals feel cold, they curl their bodies into a ball so as to decrease the surface area of their bodies. As total energy radiated by body varies directly as the surface area of the body, the loss of heat due to radiation would be reduced

With rise in pressure melting point of ice decreases. Also ice contracts on melting

Water has maximum density at 4°C. On heating above 4°C, density of water decreases and its volume increases. Therefore, water overflows in both the cases

11 (a)

From Wien's displacement law, temperature $(T) \propto 1/\lambda_m$ (where λ_m is the maximum wavelength). Thus temperature of a body is inversely proportional to the wavelength. Since blue star has smaller wavelength and red star has maximum wavelength, therefore blue star is at higher temperature then red star

12 (d)

Specific heat of a body is the amount of heat required to raise the temperature of unit mass of the body through unit degree. When mass of a body is less than unity, then its thermal capacity is less than its specific heat and vice-versa

13 (c)

Water evaporates quickly because of lack of atmospheric pressure, also temperature of moon is much higher during day time but it is very low at night

14 (b)

Light radiations and thermal radiations both belong to electromagnetic spectrum. Light radiations belong to visible region while thermal radiation belong to infrared region to EM spectrum. Also EM radiations requires no medium for propagation

15 (d)

It is not necessary that all black coloured objects are black bodies. For example, if we take a black surface which is highly polished, it will not behave as a perfect black body

A perfectly black body absorbs all the radiations incident on it

16 (d)

The potential energy of water molecules is more. The heat given to melt the ice at 0°C is used up in increasing the potential energy of water molecules formed at 0°C

17 (a)

The temperature of land rises rapidly as compared to sea because of specific heat of land is five times less than that of sea water. Thus, the air above the land becomes hot and light so rises up so pressure drops over land. To compensate the drop of pressure, the cooler air from sea starts blowing towards lands, setting up sea breeze. During night land as well sea radiate heat energy. The temperature of land falls more rapidly as compared to sea water, as sea water consists of higher specific heat capacity. The air above sea water being warm and light rises up and to take its place the cold air from land starts blowing towards sea and set up breeze

18 (b)

During the day when water is cooler than the land, the wind blows off the water onto the land (as warm air rises and cooler air fills the place). Also at night, the effect is reversed (since the water is usually warmer than the surrounding air on land). Due to this wind flow the temperature near the sea coast remains moderate

19 (c)

According to Wien's law $\lambda_m T=$ constant i.e., peak emission wavelength $\lambda_m \propto \frac{1}{T}$. Also as T increases λ_m decreases. Hence assertion is true but reason is false

20 (d)

Assertion is false because at absolute zero (0 K), heat is neither radiated nor absorbed. Reason is the statement of Stefan's law, as $E \propto T^4$

21 (a

When two bodies at temperature T_1 and T_2 are brought in thermal contract, they do settle to the mean temperature $(T_1+T_2)/2$. They will do so, in case the two bodies were of same mass and material, *i. e.*, same thermal capacities. In other words, the two bodies may be having different thermal capacities, that's why they do not settle to the mean temperature, when brought together

22 (a

Woolen fibres enclose a large amount of air in them. Both wool and air are the bad conductors of heat and the coefficient of thermal conductivity is small. So, they prevent any loss of heat from our body

23 **(c)**

Heat is carried away from a fire sideways mainly by radiations. Above the fire, heat is carried by both radiation and by convection of air. The latter process carries much more heat

24 (c)

When water leaves the body through perspiration energy content of molecules remained in body decreases, therefore temperature also decreases

25 (c)

At a high temperature (6000 K), the sun acts like a perfect blackbody emitting complete radiation. That's why the radiation coming from the sun's surface follows Stefan's law $E = \sigma T^4$

26 (a)

When the temperature of the atmosphere reaches below 0°C, then the water vapours present in air, instead of condensing, freeze directly in the form of minute particles of ice. Many particles coalesce and take cotton-like shape which is called snow. Thus snow contains air packets in which convection currents cannot be formed. Hence snow is a good heat insulator. In ice there is no air, so it is a bad insulator

27 (c)

Celsius scale was the first temperature scale and Fahrenheit is the smallest unit measuring temperature

28 **(b)**

This is in accordance with the Stefan's law $E \propto T^4$

29 (d)

Melting is associated with increasing of internal energy without change in temperature. In view of the reason being correct the amount of heat absorbed or given out during change of state is expressed Q = mL, where m is the mass of the substance and L is the latent heat of the substance

30 (c)

The 98.4°F is the standard body temperature of a man. If a man touches an iron or wooden ball at 98.4°F, no heat transfer takes place between ball and man, so both the balls would feel equally hot for the man

THERMAL PROPERTIES OF MATTER

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.

Match the conics in Column I with the statements/expressions in Column II

Column-I

- (A) Bimetallic strip
- (B) Steam engine
- (C) Incandescent lamp
- (D) Electric fuses

CODES:

C D

a) p,q q,r

b) q,r p,q q

c) p,q

d) q,r S q p,q Column-II

- (p) Radiation from a hot body
- (q) Energy conversion
- (r) Melting
- (s) Thermal expansion of solids

: ANSWER KEY:

1) a

